Evaluation of Chromogenic Agar for Screening Vancomycin-resistant Enterococcus (VRE)

Dylan R. Pillai^{2,3}, Fern Parisian¹, Matthew Doyle² (*), Anthony Wong², Susan E. Richardson^{1, 2, 3}, and Yvonne C. W. Yau^{1, 3}

1. Division of Microbiology, Hospital for Sick Children, Toronto, Ontario; 2.Ontario Agency for Health Protection & Promotion, Toronto, Ontario; 3. Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario³

BACKGROUND

Currently, our institution uses an in-house mEnterococcus agar to differentiate between *Enterococcus faecalis* and *Enterococcus faecium*, but it has a long incubation time of 72 hours. New chromogenic agars, such as ColorexTM VRE media from PML Microbiologicals and chromIDTM VRE media from bioMérieux, have recently become commercially available, and have been shown to be superior for VRE identification.

OBJECTIVES

- To verify and validate the role of these agars in screening for VRE in an acute-care pediatric hospital setting
- To evaluate the effectiveness of the commercial chromogenic agars when compared with the in-house mEnterococcus agar

METHODS

The lower limit of detection was calculated by spiking a known quantity (CFU/mL) of VRE into normal stool specimens.

To quantify analytical sensitivity and specificity, a panel of 32 well-defined strains, including *E. faecium, E. faecalis*, *Leuconostoc* spp., *Pediococcus* spp., *Candida* spp., and *Enterobacteriaceae*, was used.

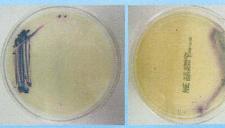
Inter-observer variability was evaluated by asking 4 experienced medical lab technologists to independently read each plate and document their findings, generating a Kappa (K) score to measure consistency.

Clinical specimens (n = 127) were plated onto the chromogenic agars to assess their clinical sensitivity and specificity.

Confirmation of VRE was done through the Roche LightCycler VRE Detection Kit, which detects the *vanA* and *vanB* vancomycin resistance genes.

RESULTS

The detection limit for the 3 plates in this study was 10-^4 CFU/mL. Visual discrimination of VRE colonies was easiest on the ColorexTM plate.


Inter-observer variability was noted for 2 of 32 specimens for the ColorexTM and chromIDTM VRE agar (K = 0.875).

mEnterococcus agar had variability for 3 of 32 specimens (K = 0.811). Eight of 32 isolates on mEnterococcus agar were too small to identify and were noted to be "pinpoint" after 72 hours of growth; these were found to not be *Enterococcus*.

Table 1: Analytical sensitivity and specificity using n = 32 well-defined strains

Medium	Sensitivity (%)	Specificity (%)
Colorex TM	100	100
chromID™	89	100
mEnterococcus	100	79

Chromogenic Agars at 24 hours After Inoculation with Stool Containing 10⁶ CFU/mL of VRE

Colorex™ VRE from PML Microbiologicals

chromiD™ VRE from bloMérieu

Table 2: Clinical sensitivity of chromogenic agars using 127 patient samples

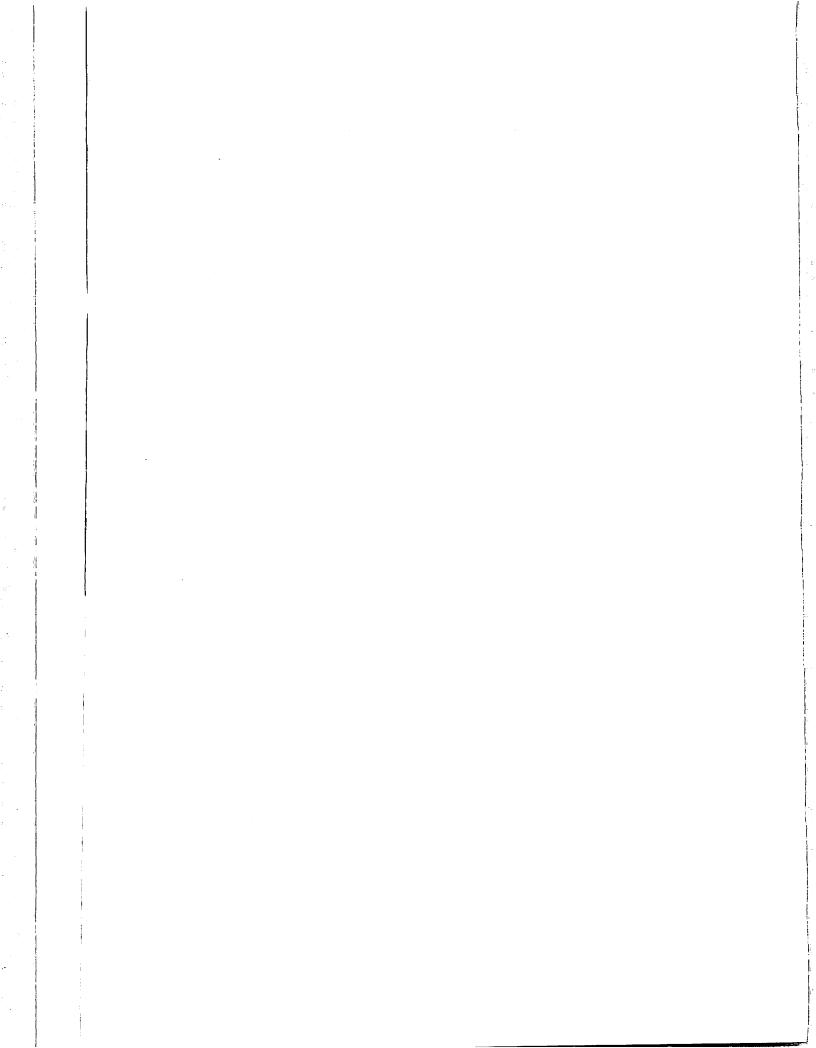
Medium	Number of True Positives	Sensitivity (%)
Colorex [™]	6	100
chromID™	5	83

CONCLUSIONS

- The ColorexTM agar was superior to both the chromIDTM and in-house mEnterococcus agar
- The Colorex™ agar correctly identified the small colony variant VRE previously observed in Ontario, which was not found on either of the mEnterococcus or chromID™ agars
- The ColorexTM agar exhibited superior sensitivity when clinical specimens were evaluated

REFERENCES

Landis, JR; Koch, GG. 1977. The measurement of observer agreement for categorical data. Biometrics. 33:159–174.


Ledeboer, N.A., K. Das, M. Eveland, C. Roger-Dalbert, S. Mailler, S. Chatellier, and W.M. Dunne. 2007. Evaluation of a novel chromogenic agar medium for isotation and differentiation of vancomycin resistant Enterococcus faecium and Enterococcus faecalis isolates, J. Clin. Microbiol. 45:1556-1560.

Ledeboer, N.A., R.J. Tibbetts, and W.M. Dunne. 2007. A new chromogenic agar medium, chromID VRE, to screen for vancomycin-resistant Enterococcus faecium and Enterococcus faecalis, Diagn, Microbiol, Infect, Dis. 59:477-479.

Miles, A.A., S. S. Misra, and J. O. Irwin. 1938. The estimation of the bactericidal power of the blood. J. Hyg. 38:732-749.

Poutanen, S.M., B.M. Willey, A. McGeer, M. Lum, L. Loule, S. Callery, S.H. Goh, Y. Yau, F. Jamleson, and S. Krajden, Characteristics of a Small Colony Variant Vancomycin-Resistant Enterococcus faecium (scvVRE) Identified in Ontario. Abstr. Xxth Intersci. Conf. Antimicrob. Agents Chemother, abstr. C2-257.

Sloan, L. M., J. R. Uhl, E. A. Vetter, C. D. Schleck, W. S. Harmsen, J. Manahan, R. L. Thompson, J. E. Rosenblatt, and F. R. Cockerill III. 2004. Comparison of the Roche LightCycler vanA/vanB detection assay and culture for detection of vancomycin-resistant enterococci from perianal swabs. J. Clin. Microbiol. 42:2638-2643.

