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Abstract (298 words) 34 
 35 
Background 36 
Vietnam has high rates of antimicrobial resistance (AMR) but limited genomic surveillance, 37 

impeding our ability to assess transmission dynamics. This study aimed to use whole genome 38 

sequencing (WGS) to examine the transmission of key AMR pathogens in two intensive care 39 

units in Hanoi, Vietnam. 40 

Methods 41 

A prospective surveillance study of all adults admitted to two intensive care units (ICUs) at 42 

the National Hospital for Tropical Diseases (NHTD) and Bach Mai Hospital (BMH) was 43 

conducted between June 2017 and January 2018. Clinical and environmental samples were 44 

cultured on selective media, characterised using MALDI TOF MS, and Illumina sequenced. 45 

Phylogenies based on the de novo assemblies (SPAdes) were constructed using Mafft 46 

(PARsnp), Gubbins and RAxML. Resistance genes were detected using Abricate against the 47 

NCBI database. 48 

Findings 49 

3,153 Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii isolates from 50 

369 patients were analysed. Phylogenetic analysis revealed predominant lineages within A. 51 

baumannii (global clone [GC]2, sequence types [ST]2, ST571) and K. pneumoniae (ST15, 52 

ST16, ST656, ST11, ST147) isolates. Colonisation was most common with E. coli (88.9%) 53 

followed by K. pneumoniae (62.4%). 91% of E. coli carried a blaCTX-M variant, while 81% 54 

of K. pneumoniae isolates carried blaNDM (54%) and/or blaKPC (45%). Transmission 55 

analysis using single nucleotide polymorphisms (SNPs) identified 167 clusters involving 251 56 

(68%) patients, in some cases involving patients from both ICUs. There were no significant 57 

differences between the lineages or AMR genes recovered between the two ICUs. 58 

Interpretation 59 

This study represents the largest prospective surveillance study of key AMR pathogens in 60 

Vietnamese ICUs. Clusters of closely related isolates in patients across both ICUs suggests 61 

recent transmission prior to ICU admission in other healthcare settings or in the community. 62 

Funding 63 

This work was funded by the Medical Research Council Newton Fund, United Kingdom; the 64 

Ministry of Science and Technology, Vietnam (HNQT/SPĐP/04.16) and the Wellcome Trust, 65 

United Kingdom. 66 

 67 
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Research in context (269):  69 

 70 

Evidence before this study:  71 

Globally, antimicrobial resistance (AMR) is projected to cause 10 million deaths annually by 72 

2050. While 90% of these deaths are expected to occur in African and Asian low- and 73 

middle-income countries (LMIC), attributing morbidity and mortality is difficult without the 74 

availability of comprehensive AMR data in these settings. Whilst efforts have been made to 75 

improve AMR surveillance in these settings, this is often hampered by limited infrastructure, 76 

training and financial resources. 77 

 78 

Added value of this study: 79 

This is the largest prospective surveillance study of three key AMR pathogens (E. coli, K. 80 

pneumoniae and A. baumannii) conducted in critical care settings in Vietnam. All patients 81 

were colonised or infected with one or more extended spectrum beta-lactamase (ESBL) 82 

producing and/or carbapenem-resistant organism. Colonisation with more than one organism 83 

was very common, with resistant E. coli predominantly isolated from stool. A small number 84 

of predominant lineages were identified for K. pneumoniae and A. baumannii, while the E. 85 

coli isolates were highly genetically diverse. A large number of genomic clusters were 86 

identified within the two ICUs, some of which spanned both ICUs. There were no significant 87 

differences between lineages or AMR genes between the two ICUs. 88 

  89 

Implications of all the available evidence: 90 

This study found high rates of colonisation and infection with three key AMR pathogens in 91 

adults admitted to two Vietnamese ICUs. Whilst transmission was common within ICUs the 92 

finding of similar lineages and AMR genes in both ICUs suggests that dissemination of AMR 93 

occurs prior to ICU admission, from either referral sites or in community settings prior to 94 

hospital admission. Strategies to tackle AMR in Vietnam will need to account for this by 95 

extending surveillance beyond ICU to hospital and community settings. 96 

 97 

 98 

 99 

 100 

 101 
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Introduction 103 

Low- and middle-income countries (LMICs) have reported widespread antimicrobial 104 

resistance (AMR) in healthcare, community and agricultural settings. In South-East Asia, 105 

dense human populations, intensive animal farming, unrestricted access to antibiotics and 106 

limited laboratory infrastructure have all contributed to the rapid expansion of AMR (1, 2).  107 

 108 

Much of this burden comes as a result of excessive use of antimicrobials in human and 109 

animal populations. In Vietnam, antimicrobial usage has been estimated to be two times 110 

higher in humans, and 1.5 times higher in animals, as compared to the European Union (3). 111 

Despite legal restrictions in Vietnam, antibiotics are often dispensed without prescriptions in 112 

the community (4). Broad-spectrum antibiotics are also commonly administered in healthcare 113 

settings to mitigate the effects of limited capacity for microbiological testing and infection 114 

control (4, 5). Detection of both resistant bacteria and antimicrobials have been recorded in 115 

the environment (6, 7), hospital waste (8) and food sources (9, 10).  116 

 117 

Extensive AMR has led to increased pressure on hospitals and is particularly problematic in 118 

critical care settings. A study conducted in Thailand between 2008 and 2012 found that 119 

almost 80% of nosocomial infections were caused by resistant bacteria, accounting for 120 

roughly 100,000 AMR cases and 50,000 deaths annually (11). Klebsiella pneumoniae is 121 

considered a dire threat because of high rates of AMR and virulence (12) and widespread 122 

resistance to last-line treatments, such as carbapenems and polymyxins (13). Acinetobacter 123 

baumannii is a leading cause of ventilator-associated pneumonia (VAP) in critically ill 124 

patients, and is commonly treated with colistin due to widespread carbapenem resistance (14, 125 

15).   126 

 127 

Whilst AMR surveillance based on phenotypic antimicrobial susceptibility testing in Vietnam 128 

has improved in recent years, the infrastructure required for systematic genomic surveillance 129 

remains to be established. This is particularly important to determine circulating lineages and 130 

elucidate potential transmission events, as other methods do not provide the same level of 131 

resolution (16). Over the past decade, various studies have demonstrated the utility of WGS 132 

in characterising AMR, transmission routes, and dominant lineages (17-19). LMICs however 133 

remain relatively understudied, with few studies conducted in Vietnamese hospitals (20-23). 134 

With increasing globalisation, understanding the dynamics of circulating lineages and 135 
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evolving AMR in these regions is necessary to address both local and global efforts to detect, 136 

monitor and manage resistant bacterial infections.  137 

 138 

In order to address this knowledge gap, we conducted a prospective genomic surveillance 139 

study of key AMR pathogens in two hospitals in Vietnam. We targeted intensive care unit 140 

(ICU) patients as we hypothesised that these would be most likely to have been treated with 141 

antibiotics and to harbour AMR pathogens. Furthermore, we focussed our analysis on the 142 

three most commonly isolated species (Escherichia coli, K. pneumoniae, and A. baumannii) 143 

that were extended-spectrum beta-lactamase (ESBL) producers and/or carbapenem-resistant. 144 

An additional in-depth analysis focussed primarily on a subset of the K. pneumoniae isolates 145 

was also performed in a separate project (Pham et al., personal communication).  146 

 147 

Methods  148 

Study design, setting and participants 149 

This prospective observational cohort study was conducted in two hospitals, the National 150 

Hospital for Tropical Diseases (NHTD) and Bach Mai Hospital (BMH) in Hanoi, Vietnam, 151 

between June 2017 to January 2018. All patients (aged 18 years or older) admitted to the 152 

adult ICUs of the two hospitals were eligible for inclusion in the study. NHTD is a specialist 153 

hospital for infectious and tropical diseases with a 22-bedded ICU which receives up to 400 154 

patients per year. BMH is a large tertiary referral hospital, with a 45-bedded ICU that 155 

receives up to 1,200 patients per year. Both hospitals are located in the same area of Hanoi 156 

but operate independently of each other and do not share laboratory facilities, equipment or 157 

staff. Patients are not commonly transferred between the two hospitals. 158 

  159 

Study procedures 160 

Screening specimens were collected from ICU patients on admission, on discharge and 161 

weekly during their ICU stay. Specimens included stool/rectal swabs, urine, skin/wound 162 

swabs and sputum/tracheal aspirates. Environmental samples were collected using flocked 163 

swabs (from door handles, bed rails, medical equipment and patient tables) on a monthly 164 

basis. Clinical data related to the ICU admission were collected from the medical records and 165 

entered into a case record form and then into an electronic database. Laboratory data were 166 

collected and recorded in an electronic database. 167 

  168 

Laboratory methods and sequencing 169 
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All patient and environmental specimens were cultured on selective media (CHROMagar™ 170 

ESBL, CHROMagar™ mSuperCARBA™, CHROMagar™ VRE, CHROMagar, France). 171 

Single colony picks of target organisms (Escherichia coli, Acinetobacter baumannii and 172 

Klebsiella pneumoniae) were selected and identified using MALDI-TOF MS (Bruker 173 

Diagnostics, Bremen, Germany) and stored at -80 °C. Stored isolates were shipped in two 174 

batches to the University of Cambridge, United Kingdom, where they were sub-cultured, re-175 

identified using MALDI-TOF MS, and underwent antimicrobial susceptibility testing (Vitek-176 

2, BioMérieux, Marcy L’Étoile, France). Isolate DNA was extracted using QIACube and the 177 

QIAamp 96 DNA QIACube HT kit (Qiagen, Hilden, Germany) prior to shipping to the 178 

Wellcome Sanger Institute for sequencing. DNA was sequenced in two batches on an 179 

Illumina HiSeq X10 machine (Illumina Inc., San Diego (CA), USA). 180 

  181 

Read quality control 182 

Raw Illumina reads were checked for quality using fastQC (v0.11.8) (24) and MultiQC (v 183 

1.0.dev0) (25). Raw Illumina reads were also checked for contamination using Kraken2 184 

(v2.0.7-beta) (26) and Bracken (v2.5) (27).  185 

 186 

Assembly 187 

Illumina reads were de novo assembled using SPAdes (v3.13.1) (28) and checked for quality 188 

using Quast (v5.0.2) (29) and CheckM (v1.0.18) (30). Further filtering and quality control 189 

methods for all assemblies is provided in the Supplementary Methods.   190 

 191 

Phylogenetic construction  192 

Prior to phylogenetic construction, reads were mapped to filtered assemblies and sites that 193 

had <90% consensus compared to the reference allele were masked. Masked assemblies were 194 

then aligned using PARsnp (v1.2) under default settings (31). Core multi-alignments 195 

produced using PARsnp were filtered for recombination using Gubbins (v.2.3.5) (32). 196 

Phylogenies were then constructed using RAxML (GTR-GAMMA model) (v8.2.12) (33) as 197 

implemented through Gubbins. E. coli phylogroups were determined using ClermonTyping 198 

(34). Trees were visualised using iTol v5.6.2 (35). Details on global reference selection are 199 

provided in the Supplementary Methods.  200 

 201 

Antibiotic resistance gene detection  202 
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Resistance genes and plasmid replicons were detected from draft assemblies using Abricate 203 

(v1.0.1) (36) and the NCBI database (for resistance genes) (37). Genes were considered 204 

present if there was 90% coverage at 90% nucleotide identity (38). 205 

 206 

Multi-locus sequence typing (MLST) 207 

Sequence types were determined using mlst (v2.19.0) (https://github.com/tseemann/mlst) and 208 

the associated species scheme (specifically the Pasteur scheme for A. baumannii) (39-41).  209 

 210 

Transmission cluster analysis 211 

Transmission clusters were constructed using Transcluster (using the makeSNPClusters 212 

method, which ignores time of sampling and uses a pure SNP-distance cut-off) (42) using 213 

single nucleotide polymorphisms (SNPs) determined after recombination filtering using 214 

Gubbins. Transmission cut-offs were evaluated based on intra- and inter-patient SNP 215 

diversity within each species phylogeny (Supplementary Figure 1).  216 

 217 
Results  218 
Samples included in the study 219 

Between June 2017 to January 2018, a total of 3,367 isolates were cultured, comprising 220 

Escherichia coli (n=765), Klebsiella pneumoniae (n=1,372) and Acinetobacter baumannii 221 

(n=1,230). Thirty-one isolates were excluded from the analysis because of poor assembly 222 

quality. A further 150 isolates were excluded because of suspected inter-species 223 

contamination, and 33 isolates were excluded because of suspected intra-species (strain-level) 224 

contamination (Supplementary Figure 2). Thus 3,153 isolates (93.6%), comprising 2,901 225 

isolates from 369 patients and 252 environmental isolates, passed quality filtering and were 226 

included in the final analyses. 227 

 228 

Clinical data 229 

Of the 3,153 isolates, 1,042 (33%) were collected from BMH, while 2,111 (67%) were 230 

collected from NHTD (Table 1). Both hospitals recruited a similar number of patients and the 231 

average age was 53-55 years (BMH median age 55, NHTD median age 57.5). The average 232 

length of stay (LOS) in BMH was 7 days (median 6 days), and 21 days (median 16 days) at 233 

NHTD (Supplementary Figure 3). Patient outcomes are summarised in Table 1. 234 

 235 

 236 
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 237 

 238 

 239 

Table 1: Summary of isolates and patients included in the study 240 

Variable Bach Mai Hospital National Hospital of Tropical 
Diseases 

Isolates:     

 Total 1042 2111 

 Clinical 993 (95%) 1898 (90%) 

 Environmental 49 (5%) 213 (10%) 

Patients:     

 Total 182 187 

 Male 104 (57%) 114 (61%) 

 Female 71 (39%) 50 (27%) 

 Gender not recorded 7 (4%) 23 (12%) 

Age:     

 Male 53 years (range 16-85) 55.2 years (range 5-92) 

 Female 53.4 years (range 19-91) 55.7 years (range 10-90) 

Age not recorded n=5 (3%) n=19 (10%) 

Length of stay:     

  7.5 days (range 0 – 35) 21 days (range 1 – 75) 

Stay not recorded n=4 (2.2%) n=7 (3.7%) 

Outcome at discharge from ICU     

Stable, discharged home 10 (6%) 38 (20%) 

Improved, transferred to another 
ward 

117 (64%) 83 (44%) 

Deteriorated, transferred to 
another ward 

3 (2%) 7 (4%) 

Discharged home to die 44 (24%) 43 (23%) 

Died in hospital 4 (2%) 9 (5%) 

Not recorded 4 (2%) 7 (4%) 

 241 

 242 

 243 
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 244 

 245 

All of the 369 patients were colonised or infected with one or more of the three species: E. 246 

coli, A. baumannii and K. pneumoniae: 146 patients (40%, 55 at BMH and 91 at NHTD) 247 

were colonised or infected with all three species; 133 patients (36%, 66 at BMH and 67 at 248 

NHTD) were colonised or infected with two of the three species; and 90 patients (24%, 61 at 249 

MNH and 29 at NHTD) only had one species detected. 250 

  251 

Both E. coli and K. pneumoniae were isolated primarily from stool / rectal swabs (627/721 252 

[87.0%] and 822/1316 [62.5%], respectively). K. pneumoniae was also isolated from other 253 

sites including sputum (325/1316 [24.7%]), urine samples (63/1316 [4.8%]) and skin swabs 254 

(17/1316 [1.3%]). In contrast, A. baumannii isolates were mostly isolated from sputum 255 

(621/1116 [55.6%]), followed by stool / rectal swabs (247/1116 [22.1%]), urine (49/1116 256 

[4.4%]) and skin swabs (36/1116 [3.2%]). A. baumannii also accounted for the highest 257 

number of environmental isolates (161/1116, [14.4%]), compared to 6.5% (85/1316) for K. 258 

pneumoniae and 2.2% (16/721) for E. coli.  259 

 260 

Whole genome sequencing reveals predominant circulating lineages 261 

Phylogenetic trees for each species were constructed to explore lineage diversity within the 262 

dataset. The E. coli isolates were found to be genomically diverse, with isolates spread over 263 

eight phylogroups and 80 sequence types (STs) (Figure 1). The most prevalent ST was ST648 264 

(phylogroup A; 11.8%), followed by ST410 (phylogroup C; 9.7%), ST617 (phylogroup A; 265 

9.2%), ST131 (phylogroup B2; 7.9%) and ST1193 (phylogroup B2; 7.4%). Overall, 33 of the 266 

80 STs only had one representative isolate in this dataset. 267 

  268 

In contrast, the K. pneumoniae and A. baumannii isolates appeared to be centred around 269 

specific dominant lineages. More than 80% of the K. pneumoniae isolates were from one of 270 

five STs, including ST15 (n=34%), ST16 (n=20%), ST656 (n=12%), ST11 (n=11%) and 271 

ST147 (n=7%). The majority of A. baumannii were global clone (GC)2 (n=832, 74.6%) (43) 272 

and mainly belonged to ST2 (n=48%) and ST571 (n=24%) (based on the Pasteur scheme). 273 

There did not appear to be any relationship between STs and hospitals, with all of the major 274 

ST lineages detected in both ICUs. 275 

 276 
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 277 
Figure 1: Whole genome phylogenies for [A] E. coli, [B] A. baumannii, and [C] K. pneumoniae: 278 

recombination-filtered core-SNP trees with mid-point root. Tree metadata includes (from left to right column 279 

beside trees): MLST, source and hospital. Outermost purple bars indicate environmental isolates. Branches 280 

corresponding to E. coli phylogroups are coloured accordingly. Main STs are highlighted in the image using the 281 

pale-yellow boxes.  282 

 283 

 284 

 285 
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In order to gain broader insight into the lineages, we selected globally representative strains 286 

to contextualise our dataset. Addition of these global representatives into the E. coli 287 

phylogeny showed that most isolates belonged to a globally diverse set of STs that were not 288 

unique to Vietnam, but found across parts of North America, Europe and Asia 289 

(Supplementary Figure 4). Similarly, several of the major K. pneumoniae lineages were 290 

represented globally, particularly ST147, ST11 (mainly from China and the USA) and ST15 291 

(mainly Asian countries) (Supplementary Figure 5). However, it was also clear that local 292 

expansion was prominent, particularly among the ST656, ST16 and ST15 lineages. For A. 293 

baumannii, we focused primarily on GC2 isolates (Supplementary Figure 6). There was very 294 

little representation of global strains similar to lineages within our dataset, and those that 295 

were available consisted mainly of strains from other parts of Asia. 296 

  297 

Closer inspection of the global representatives found several strains in each species that were 298 

closely related (<5 core SNPs) to isolates in our dataset (Supplementary Table 1). Most of 299 

these global representatives were also isolated in Asian countries. The exception was E. coli, 300 

where two closely related global representatives were from the United Kingdom and 301 

Australia (ST1193 and ST131, respectively). Agricultural isolates were also linked to these 302 

lineages, as the other two closely related E. coli representatives were originally isolated from 303 

poultry (biosample SAMEA104188722) and a farm worker in Vietnam (biosample 304 

SAMEA5277968). 305 

  306 

High prevalence of antibiotic resistance genes among majority of isolates 307 

Almost all isolates carried acquired resistance genes belonging to at least 3 antibiotic classes, 308 

with 90% of E. coli, 97% of K. pneumoniae and 41% A. baumannii carrying genes across 5 309 

antibiotic classes (Figure 2). There were no discernible differences based on sample source or 310 

hospital, with the exception of E. coli detected in pus/skin swabs (n=6) which appeared on 311 

average to carry resistance to more antibiotic classes. K. pneumoniae isolates tended to fall 312 

into one of three “peaks” (Figure 2). This was due to lineage-specific carriage of acquired 313 

resistance genes, where ST15 isolates tended to carry resistance to more classes, compared to 314 

ST16 which often carried the least. The other three main lineages (ST656, ST11, ST147) fell 315 

between these two peaks. The exception was in the environmental samples, where only two 316 

peaks can be seen. This is likely due to very few ST16 isolates detected in the environment. 317 

 318 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.20246397doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.09.20246397
http://creativecommons.org/licenses/by-nc-nd/4.0/


 319 
Figure 2: Summary of isolates and the number of antibiotic resistance classes separated by species, hospital and 320 

sample type.   321 

 322 

Resistance to antibiotics classes varied across the E. coli phylogeny, reflective of the 323 

diversity of strains within the dataset (Supplementary Figure 7). blaCTX-M genes were 324 

found in most E. coli, with blaCTX-M-15 (36%), blaCTX-M-27 (30%) and blaCTX-M-55 325 

(17%) the most prevalent (Table 2). blaKPC-2 (13%) and blaNDM-[1,4,5,7] (24%) were 326 

present sporadically across the phylogroups, suggesting independent acquisitions events. 327 

Only 4% (n=28) of isolates carried mcr genes conferring resistance to colistin. Again, these 328 

seemed to be independent acquisitions, with the exception of an ST206 cluster (phylogroup 329 

A; n=11) involving three patients from NHTD. 330 

 331 

Conversely, MDR gene presence across the K. pneumoniae isolates appeared consistent with 332 

the main lineages, suggesting clonal expansion rather than diverse sampling of the species 333 
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(Supplementary figure 8). Similar to the E. coli, incidence of blaCTX-M-15 (37.5%) was 334 

high, but less so overall compared to blaKPC-2 (45%) and blaNDM (54%) (NDM-4 [27.9%], 335 

NDM-1 [24.7%] and NDM-5 [1.8%]) (Table 2). 336 

 337 

Acquired AMR genes were overall less prevalent among the A. baumannii isolates. Similar to 338 

the K. pneumoniae, resistance to specific classes tended to be a feature of each distinct 339 

lineage, suggesting clonal expansion (Supplementary Figure 9). The carbapenemase gene 340 

blaOXA-23 was present in 83% of the dataset, with blaOXA-58 and blaOXA-72 present at 341 

much lower frequencies (5% and 0.2% respectively) (Table 2). The aminoglycoside 342 

resistance gene armA was also highly prevalent (76%). 343 

  344 

Overall, 133 AMR genes were detected in BM and 154 were detected in NHTD. 49 genes 345 

were unique to either hospital (35 in NHTD, 14 in BM), but were only detected at a 346 

prevalence of less than 0.1%, suggesting sporadic cases. The remaining 129 genes were the 347 

same across both hospitals. The genes with the highest prevalence (at least 1%) were found to 348 

be almost identical in both hospitals, with the exception of blaNDM-4 (0.98%), dfrA12 349 

(0.92%), rmtB1 (0.86%), qnrB6 (0.74%) and blaOXA-181 (0.56%) which were below 1% 350 

prevalence in NHTD. 351 

 352 

In order to determine if certain time points throughout the study had different gene burdens 353 

(potentially indicative of mobile genetic element [MGE]-mediated transmission), we plotted 354 

gene presence versus date for genes equivalent to 1% prevalence in either hospital 355 

(Supplementary Figures 10). Overall, we found that both ICUs had a consistently high 356 

burden, making it difficult to distinguish significant gene fluctuations over time. In NHTD, 357 

we observed three genes that seemed to peak between November to December 2017. 358 

Examination of our dataset for isolates with these three genes (blaNDM-4, blaOXA-181 and 359 

rmtB1) revealed a subset of ST16 K. pneumoniae that carried all three genes as well as a 360 

single ST11 isolate from BM. We plotted the presence of these isolates over time, which 361 

mirrored the rise in prevalence in NHTD over the November to December period 362 

(Supplementary Figure 11). No E. coli nor A. baumannii isolates in this dataset carried all 363 

three genes. 364 

 365 

 366 

 367 
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 368 

 369 

Table 2: Summary of resistance genes found in the three species  370 

Resistance gene class Escherichia coli Acinetobacter 

baumannii 

Klebsiella pneumoniae 

Tetracycline 563 (78.1%) 701 (62.8%) 753 (57.2%) 

Sulphonamide 649 (90%) 746 (66.8%) 969 (73.6%) 

Fluoroquinolone 161 (22.3%) 19 (1.7%) 11873 (90.2%) 

Colistin 28 (3.9%) 0 (0%) 10 (0.8%) 

Fosfomycin 48 (6.7%) 5 (0.4%) 13163 (100%) 

MLS 579 (80%) 816 (73.1%) 623 (47.3%) 

Trimethoprim 621 (86.1%) 41 (3.7%) 982 (74.6%) 

Phenicols 274 (38%) 176 (15.8%) 675 (51.3%) 

Bleomycin 179 (24.8%) 36 (3.2%) 717 (54.5%) 

β-lactamase 718 (99.6%) 1018 (91.2%) 1286 (97.7%) 

Class C:    

EC 7211 2 0 

ACT 0 1 0 

CMY 209 1 2 

DHA 26 2 24 

Class A:    

LAP 17 0 142 

CARB 0 63 0 

PER 0 68 0 

TEM 347 697 686 

SHV 7 9 12923 

VEB 0 12 3 

CTX 613 4 681 

KPC 94 3 593 

Class D:    

OXA 251 9962 611 

Class B:    

IMP 0 6 1 

NDM 173 35 716 

Rifamycin 114 (15.8%) 63 (5.6%) 810 (61.6%) 

Aminoglycoside 680 (94.3%) 1115 (99.9%) 1290 (98%) 

Streptothricin 11 (1.53%) 8 (0.7%) 0 (0%) 
1 blaEC intrinsic in E. coli 371 
2 blaADC and blaOXA intrinsic in A. baumannii (except OXA-[1,10,23,58,72]) 372 
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3 fosA (fosfomycin), oqxAB (fluoroquinolone) and blaSHV intrinsic in K. pneumoniae  373 

ESBL resistance genes are highlighted in grey and carbapenem resistance genes in yellow 374 

Most patients carried several AMR strains 375 

 376 

Over half of the patients in this study had multiple isolates of the same species during their 377 

stay (E. coli: 51%, K. pneumoniae: 57%, A. baumannii: 58%). Of these patients, 60-70% had 378 

different sequence types (ST) (E. coli: 67%, K. pneumoniae: 68%, A. baumannii: 64%) 379 

(Figure 3). For E. coli and K. pneumoniae, the majority of patients only had isolates detected 380 

in stool (80% and 54%, respectively). Conversely, most patients with A. baumannii were 381 

detected only in sputum (38%), or sputum and stool (32%). 382 

 383 

 384 

 385 
Figure 3: Overview of strain diversity, recurrence and source among study patients: “Patients” refers to 386 

the total number of patients in this study that had at least one isolate of that species. Within each species, we 387 

evaluated whether patients had (i) only a single isolate for that species, or (ii) multiple isolates. If only a single 388 

isolate, we determined whether it was collected on admission to the ICU or after. For multiple isolates, we 389 

determined if the patient’s isolates were the same ST (recurrent) or a different ST. We finally looked at how 390 
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many patients had isolates from one site (urine, swab, stool or sputum) or mixed sites (any combination of 391 

sites).  392 

 393 

Evidence of extensive transmission between ICU patients 394 

Temporal observation of the isolates found no obvious association of any time point with any 395 

ST to suggest an outbreak of a specific lineage. In order to investigate potential clusters 396 

within the ICUs at a higher resolution, we examined plausible short-term transmission events 397 

using single nucleotide polymorphisms (SNPs). 398 

 399 

To identify closely related strains that could indicate recent transmission, we evaluated 400 

clusters based on SNP distances across the core genome of each species for this dataset. 401 

Given the short sampling period, none of the three major species were likely to acquire more 402 

than 1 SNP while in the hospital. As such, we looked at samples with genomic evidence of 403 

most recent transmission; zero SNP clusters. Clusters were defined when they involved >1 404 

patient. Clusters involving a single patient and environmental samples were not included. 405 

 406 

Most clusters were detected in K. pneumoniae and A. baumannii isolates, with 71 and 74 407 

clusters representing 38% and 52% of total isolates for that species, respectively (Figure 4). 408 

K. pneumoniae had some of the largest clusters, ranging in size from 2 to 79 isolates, while A. 409 

baumannii clusters were smaller, between 2 to 33 isolates. Only 22 clusters were detected in 410 

E. coli and were generally small (median 3 isolates, range 2 to 9 isolates), representing only 411 

13% of the E. coli dataset. 412 

 413 

For all three species, the majority of clusters were detected between patients within a single 414 

ICU. Evaluating admission and discharge dates further confirmed patient overlap in these 415 

clusters (Figure 4, Supplementary Figures 12 to 17). 416 

 417 
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 418 
Figure 4: Summary of 0 SNP clusters in all species: Clusters were defined as (i) multiple patients: samples 419 

were derived from at least two different patients, or (ii) same patient: isolates were derived from the same 420 

patient, or only a single patient and the environment. Epidemiological evidence to support clusters was defined 421 

as (i) confirmed patient overlap: all patient ICU stays overlap with another in the same cluster, (ii) some patient 422 

overlap: at least 2 patient ICU stays overlap, and (iii) zero patient overlap between all patients in cluster. ENV 423 

isolate in clusters: clusters were counted if an environmental isolate was found in that cluster. Colonisation vs. 424 

infection: clusters were counted if they (a) had only isolates from stool (i.e. colonisation) or (b) had isolates 425 

from urine, swabs and/or sputum with or without isolates from stool (i.e. infection).  426 

 427 

A. baumannii clusters were most often associated with environmental isolates (24/74 clusters, 428 

Figure 4). The largest A. baumannii cluster within the same hospital ICU involved 33 isolates 429 

from eight patients and eight environmental samples (Supplementary Figure 13; ST451, 430 

cluster number 13). Admissions for patients in this cluster overlapped with detection of the 431 

same strain in the environment, which was also detected in the hospital environment several 432 

months later. Only two E. coli clusters contained related environmental isolates. K. 433 

pneumoniae environmental isolates were more often found in within-hospital (ICU) clusters 434 

(n=11) compared to between-hospital clusters (n=4). 435 

  436 

To broadly evaluate infection risk for each outbreak cluster, we determine whether clusters 437 

contained (i) stool sample / rectal isolates only, indicating colonisation or (ii) isolates from 438 

urine, skin swab or sputum samples, which could represent infection or colonisation at 439 
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multiple sites. The majority of A. baumannii clusters contained isolates from non-stool / 440 

rectal swab samples (Figure 4). Conversely, colonisation-only clusters were common for E. 441 

coli; the largest E. coli cluster involving both hospital ICUs contained only 5 isolates from 442 

four patients, which were all isolated from stool (Supplementary Figure 14; ST617, cluster 443 

number 37). K. pneumoniae clusters were a mix, with both colonisation-only clusters and 444 

infection clusters. 445 

 446 

In addition to suspected within-ICU transmission, we also detected a number of clusters 447 

involving patients from both hospital ICUs (Figure 4). The most pronounced example of this 448 

was a large ST15 K. pneumoniae cluster involving 79 isolates from 38 patients and 6 449 

environmental samples (Supplementary Figure 18). Most were collected between July to 450 

September, with some late occurrences in October and November. All patients from NHTD 451 

between July to September had overlapping timelines, consistent with spread within the ICU 452 

(Supplementary figure 16; ST15, cluster number 15). Only one patient had no evidence of 453 

overlap (ND162) but did cluster with environmental isolates from the same timeframe, 454 

indicating a possible environmental source. Patients from BM appeared to have both patient 455 

overlap and consecutive acquisitions without patient overlap as time progressed. This 456 

suggests that patient transmission and also transmission via other routes (e.g. inadequate 457 

cleaning before the next patient, transmission via healthcare workers) may have been 458 

important factors in the spread of this strain. 459 

 460 

The identification of closely related isolates between independently operating ICUs 461 

suggested that there may have been a common source located outside the ICU e.g admission 462 

to the same location prior to admission to ICU.  To determine if certain lineages were more 463 

associated with acquisition within the ICU, we assessed diversity on arrival (i.e. the patients 464 

first sample) versus diversity within the ICU (all other samples). Based on ST alone, we 465 

found a slight increase in diversity in the ICU versus on arrival (Supplementary Figure 19). 466 

However, the unique STs recovered in either setting only represented a small portion of the 467 

isolates overall. All of the main lineages for each species were found on both admission and 468 

within the ICU (Supplementary Figure 19 and 20). 469 

 470 
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 471 
Figure 5: Scatterpie showing the number of clusters in patients across all species: y-axis represents patients 472 

from BM or NHTD involved in at least one 0 SNP cluster. X-axis represents length of stay for that patient; one 473 

pie is plotted per patient at the duration of their stay. Each circle represents 0 SNP clusters in a single patient. 474 

The size of the clusters corresponds to the number of clusters, while the colour relates to the species. The left 475 

plot shows all 0 SNP clusters, while the right plot shows clusters condensed at 5 SNPs. 476 

 477 

 478 

 479 

 480 

 481 

 482 
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Identification of multiple transmission clusters per patients 483 

Overall, there were 251 patients (representing 68% of the cohort) involved in 167 clusters 484 

across the three species collected over the course of this study. 112 patients were only 485 

involved in a single cluster during their time in the ICU (Figure 5). However, the remaining 486 

139 patients were involved in at least two clusters, with one patient involved in 12 clusters 487 

detected at 0 SNPs. For patients with at least two clusters, 20 had clusters from all three 488 

species, 94 had clusters from two species and 25 had only one species. Overall, we saw a 489 

general trend towards more clusters in a single patient as they spent more time in the ICU 490 

ward. 491 

  492 

To determine if our clusters were potentially derived from a single original cluster predating 493 

their time in the ICU, we looked at SNP distances between clusters of the same ST 494 

(Supplementary Figure 21). At a threshold of five SNPs, several of the prominent STs within 495 

each species formed large clusters, including ST804 in A. baumannii and ST16 in K. 496 

pneumoniae. At this threshold, we found 29 clusters in the A. baumannii dataset (originally 497 

74), 23 clusters in the K. pneumoniae (originally 71) and 19 clusters in E. coli (originally 22). 498 

By readjusting our analysis per patient using these clusters, we found that 123 patients had 499 

only a single cluster during their stay (Figure 5). 128 patients had 2 clusters, with the 500 

maximum number of clusters in a single patient being 7 (n=3 patients). 501 

 502 

 503 

Discussion 504 

Here we present a large prospective surveillance study of three key AMR pathogens from 505 

two hospital ICUs in Vietnam. We used WGS to capture a high-resolution snapshot of the 506 

dominant circulating lineages over a six-month period. In this study we focused on E. coli, K. 507 

pneumoniae, and A. baumannii, as these were the most commonly isolated species from both 508 

ICUs. These three species have also been reported as highly prevalent in other Vietnamese 509 

studies (44), and are amongst the most clinically significant Gram-negative bacteria, having 510 

been designated as “critical” priority pathogens for research and development of new 511 

antibiotics by the World Health Organisation (45).  512 

 513 

Phylogenetic analysis of all three species suggested local dominance of specific lineages for 514 

K. pneumoniae and A. baumannii. Comparison to global representatives found few closely 515 

linked strains, with an overall preference for local clustering. This was particularly evident 516 
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for K. pneumoniae ST15, ST656, ST11 and ST16 and many of the GC2 isolates for A. 517 

baumannii. One notable exception was from a study conducted in southern Vietnam (46), 518 

where a number of GC2 A. baumannii strains were found to be closely related to ST571 519 

isolates from this study. Similar studies in other Vietnamese hospital settings have also 520 

identified K. pneumoniae isolates corresponding to ST15 (23), ST16 (47) and ST11 (48) with 521 

similar antimicrobial resistance profiles carrying blaKPC and blaNDM. This suggests that 522 

these lineages may not be restricted to referral hospitals in Hanoi but may potentially occur 523 

throughout Vietnam. In contrast, analysis of the study E. coli isolates and comparison with 524 

global references did not identify evidence for locally dominant lineages, instead showing 525 

large dispersal of global strains throughout the phylogeny. 526 

 527 

Despite limiting our study samples to ESBL-producing and/or carbapenem-resistant isolates 528 

belonging to three species, we identified a large number of isolates with an average of 16.55 529 

and 9.68 isolates/day from patients in BMH and NHTD, respectively. This is an exceedingly 530 

high number compared to other countries, such as the United Kingdom (UK), where a similar 531 

study only found 199 ESBL-producing Enterobacteriaceae over the course of one year (0.5 532 

isolates/day) from three hospital sites between 2008 to 2009 (49). A point-prevalence survey 533 

conducted in a UK hospital in 2017 also identified no positive carbapenemase-producing 534 

Enterobacteriaceae (CPE) from 540 samples (50).  535 

 536 

Nearly all of the isolates presented in this study were characterised as multi-drug resistant 537 

(MDR) on the basis of resistance to three or more antimicrobial drug classes (51). K. 538 

pneumoniae was found to be particularly resistant, with a number of isolates carrying genes 539 

to more than nine antibiotic classes. The only drug to which we did not observe extensive 540 

resistance was mcr gene-mediated colistin resistance, which has been reported in animal 541 

farming and agriculture in Vietnam (52-55). It is possible that the mcr gene has not yet 542 

become disseminated to more urban areas of Vietnam, despite the use of colistin in clinical 543 

settings. A limited number of isolates displayed mutational changes related to colistin 544 

resistance, such as interruption of the mgrB gene in K. pneumoniae (56). We did not further 545 

investigate the role of mutational colistin resistance as we did not have the capacity to 546 

corroborate genotypic resistance with phenotypic measurements in this study. 547 

 548 

Colonisation was found to be a large reservoir for AMR, with the majority of E. coli and 549 

more than half of the K. pneumoniae isolated from stool samples, as has been documented 550 
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previously in Vietnamese hospitals (57). High community usage of antibiotics in Vietnam is 551 

likely to promote colonisation with AMR bacteria, as prior treatment with antibiotics is 552 

known to lead to colonisation (58). Colonisation itself has been identified as a risk factor for 553 

subsequent infection (59-61), and has been previously documented in ICU patients in 554 

southern Vietnam (62). Colonisation with AMR E. coli has also been identified as a risk for 555 

transferral of resistance to other colonising pathogens, such as Shigella (63).  556 

 557 

Infection control is critically important for reducing the risk of hospital-acquired infections 558 

(HAIs) and mortality in ICUs. Here we found evidence for numerous recent transmission 559 

events involving multiple patients, where A. baumannii and K. pneumoniae were more often 560 

found in transmission clusters. A. baumannii is particularly problematic to control in hospital 561 

environments owing to its ability to resist desiccation and cleaning (64) and to survive for 562 

long periods of time on surfaces (65, 66). K. pneumoniae is also commonly responsible for 563 

outbreaks in healthcare settings globally (67-69), and requires immediate and appropriate 564 

intervention due to its propensity to be highly resistant and virulent (70). Detection and 565 

prevention of AMR transmission in LMICs is difficult for a number of reasons. These include 566 

limited capacity for microbiological testing, overcrowding of ICUs, inability to isolate ICU 567 

patients, and inadequate staff training or knowledge of infection control procedures (71, 72). 568 

The high level of AMR in this study would have made it difficult to discern specific clusters 569 

using phenotypic methods alone. WGS enables accurate investigation of transmission events 570 

but its use is limited by lack of infrastructure, expertise and high cost, particularly in 571 

resource-constrained settings. 572 

  573 

In addition to evidence for recent transmission between patients on the same ICU, we also 574 

identified clusters involving patients from both hospital ICUs. This result was unexpected, as 575 

there was no direct transfer of patients between the two ICUs. The most likely explanation 576 

for these clusters is a source outside of the ICUs, such as other wards or other hospitals which 577 

may have referred patients to ICU. Another possibility is that AMR strains may have been 578 

acquired in the community, reflecting high rates antibiotic usage in the community and AMR 579 

detection in livestock and food. Based on the similarity between lineages and AMR across 580 

both ICUs, we suggest that transmission, particularly of the predominant A. baumannii and K. 581 

pneumoniae lineages, is likely already circulating outside of the ICUs, where it is then further 582 

propagated. 583 

  584 
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We acknowledge some limitations to our study. First, contamination of some of the isolates 585 

prior to WGS necessitated additional filtering steps for the majority of samples. Secondly, we 586 

did not extensively explore plasmid profiles amongst the samples because of the limitations 587 

of short read sequence data. Thirdly, although serial samples were collected and cultured, we 588 

selected single colony picks for sequencing. It is therefore possible that some diversity may 589 

have been lost at different timepoints during the study sampling period. Finally, this study 590 

focused on patient and environmental samples only. We were therefore unable to investigate 591 

potential transmission events involving hospital staff and/or visitors.   592 

  593 

Nevertheless, we present the largest prospective surveillance study of multidrug-resistant E. 594 

coli, A. baumannii and K. pneumoniae in Vietnamese critical care patients to date. The 595 

extensive transmission and AMR detected within and between ICU wards suggests dominant 596 

circulating lineages of A. baumannii and K. pneumoniae existing both within hospitals, and 597 

potentially in community settings in Vietnam.  Further work should be conducted to expand 598 

genomic surveillance in hospital and community settings to determine the levels of AMR and 599 

prominent lineages in order to inform AMR control strategies in Vietnam. 600 

 601 

Data sharing 602 

Genome sequence data have been deposited in the European Nucleotide Archive (ENA) 603 
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unmasked) are available on Figshare under the following DOI: 606 

10.6084/m9.figshare.13303253, 607 
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