Validation of AquaCHROM[™] ECC for the Detection and Enumeration of Coliforms and

Escherichia coli in Water Samples

AOAC Performance Tested MethodSM 072202

Author Names and Affiliations

Jonathan Blackburn^a, Andrew Deterding^a, Wesley Thompson^a, M. Joseph Benzinger, Jr. ^a, Benjamin

Bastin^a, Julie Evrard^b, Cecilia Wentrup^b, Christophe Michon^b, and Hugo Cruz Ramos^b.

^aQ Laboratories, Cincinnati, OH, USA 45204

^bCHROMagar, 75006 Paris, France

Corresponding author's e-mail:

chromagar@chromagar.com

ORCID Numbers:

Jonathan Blackburn: 0000-0002-9123-2194 Andrew Deterding: 0000-0003-1899-4130 Wesley Thompson: 0000-0003-1066-716X M. Joseph Benzinger, Jr.: 0000-0002-7976-8527 Benjamin Bastin: 0000-0002-2273-9469 Julie Evrard: 0000-0001-5926-5319 Cecilia Wentrup: 0000-0002-8706-0828 Christophe Michon: 0000-0002-5458-713X Hugo Cruz Ramos: 0000-0002-2079-6734

Abstract

Background: The AquaCHROM[™] ECC method from CHROMagar[™] is intended for the detection and enumeration of *Escherichia coli* and coliform bacteria in 100 mL water samples after 18–24 h of incubation at 35–37°C.

Objective: To validate the AquaCHROM ECC method for qualitative and quantitative detection of *E. coli* and non-*E. coli* coliforms with different water matrixes.

Methods: Inclusivity/exclusivity studies were conducted. AquaCHROM ECC was compared to U.S. cultural reference methods in unpaired matrix studies for detection of *E. coli* and coliforms in tap water, well water, lake water, and bottled water, and for enumeration in tap water, well water, and lake water. Three production lots of AquaCHROM ECC were tested for product consistency and stability. Variations in incubation time and temperature were evaluated in robustness testing. **Results:** Inclusivity/exclusivity results demonstrated expected performance with the exception of three strains of *Salmonella enterica*, two species of *Shigella* and one strain of *Aeromonas*, which turned the media blue instead of yellow. Results from the matrix studies demonstrated that the candidate and the reference methods can be considered not statistically different for detection of *E. coli* and coliforms. Production of the AquaCHROM powder was proven to be consistent with a shelf life of 24 months. Variation in temperature did not affect the method performance. Shortening the incubation time is not recommended.

Conclusions: AquaCHROM ECC is an effective method for the detection and enumeration of *E. coli* and coliforms in 100 mL water samples for the water matrixes evaluated.

Highlight: The AquaCHROM ECC method is a quick, one-step method for the recovery and enumeration of *E. coli* and other coliform bacteria in 100 mL water samples. It is a non-agar based chromogenic medium which provides a clear result without the use of a UV-lamp.

General Information

Coliform bacteria are a category of rod-shaped, non-spore forming Gram negative bacteria. These organisms can be motile or non-motile and can ferment lactose with the production of acid and gas. While coliform bacteria are quite common and normally harmless, coliform contamination in food or beverage products could pose a health risk. Coliform bacteria are commonly found in soil and vegetation, but when coliforms are found in the food and/or water supply, this can be an indication of fecal contamination. This raises the question of pathogen contamination occurring through a similar process. Many coliforms including *Escherichia coli*, a subgroup of coliforms, can be found in the human digestive tract. While some strains of *E. coli* are harmless, other strains can cause serious illness. If *E. coli* contamination is detected, it is possible that other pathogens could be present (1).

Principle of the Method

The AquaCHROM[™] ECC is a chromogenic medium for the detection and/or enumeration of *E. coli* and coliforms in water samples. Coliforms are *Enterobacteriaceae* able to ferment lactose and are present in human and warm-blooded animals' intestinal flora, in the soil and water. This method is intended for laboratory use and field testing, it should be used by personnel following good laboratory practices.

The product is composed of a powder medium and is supplied in ready-to-use, pre-weighed doses. Each dose is for a 100 mL water sample. The product is stored at 15–30 °C. For presence absence testing, the pre-weighed dose is added to a sterile transparent vessel containing a 100 mL water sample and then incubated at 35–37 °C for 18–24 h. *E. coli* results are green to blue-green, and non-*E. coli* coliform results are yellow. If a mixture of *E. coli* and non-*E. coli* coliforms are present, the medium will appear green. The product can also be used for MPN analysis. For this method, the 100 mL water sample is poured into a dispenser, and then the dose of AquaCHROM ECC is added. After shaking to dissolve the AquaCHROM ECC powder, the 100 mL sample is dispensed into the wells of a 48-well Deep well sample plate. The plate is incubated at 35–37°C for 18–24 h. *E. coli* and non-*E. coli* coliforms are green.

present, the medium will appear green. The wells are counted based on color, and then compared to the AquaCHROM ECC MPN Table.

Scope of Method

- (a) Analytes.—E. coli and non-E. coli coliform bacteria.
- (b) *Matrixes*.—Tap water, well water, lake water, and bottled water.
- (c) Summary of Validated Performance Claims. The AquaCHROM ECC method is comparable to the U.S. Environmental Protection Agency (EPA) Method 1604 (2002), Total Coliforms and Escherichia coli in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium) (2) for detection of *E. coli* and non-*E. coli* coliform bacteria in tap water, well water, and lake water and to the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA/BAM) Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria (3) for bottled water. In addition, the AquaCHROM ECC method is equivalent to EPA 1604 for enumeration of *E. coli* and non-*E. coli* and lake water.

Definitions

- (a) Probability of Detection (POD).—The proportion of positive analytical outcomes for a qualitative method for a given matrix at a given analyte level or concentration. POD is concentration dependent.
- (b) Difference of probabilities of detection (dPOD). Difference of probabilities of detection is the difference between any two POD values. If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5 % level.
- (c) *Difference of Means*.—Difference in Log₁₀ of the average results between the candidate and reference method for one level of contamination.

- (d) Repeatability.—Precision where independent test results are obtained with the same method on equivalent test items in the same laboratory by the same operator using the same equipment within a short interval of time.
- (e) Confidence interval (CI).—A confidence interval displays the probability that a parameter will fall between a pair of values around the mean. Confidence intervals are calculated at the 90 % and 95 % levels.
- (f) *Statistical equivalence*.—The acceptance criterion for statistical equivalence is that the 90 % CI on the bias between the methods falls within -0.5, 0.5.
- (g) *Most Probable Number (MPN)*.—An estimate of the level of viable microbial contamination of a sample based on probability statistics.

Materials and Method

Test Kit Information

- (a) Kit name.—AquaCHROM[™] ECC.
- (b) Catalog number.—AQ056.
- (c) Ordering information.—<u>http://www.chromagar.com/.</u>

Test Kit Components

- (a) AquaCHROM ECC.—Box, 100 vials.
- (b) AquaCHROM ECC MPN 48-Well Plate.
- (c) AquaCHROM ECC MPN Table.

Additional Supplies and Reagents

- (a) Sterile polypropylene bottles.—Capable of holding 100 mL of water.
- **(b)** *Whirl-Pak® Stand-up Bags.*—100 mL per sample bag.

Apparatus

(a) Incubators.—Capable of maintaining 35–37°C.

Safety Precautions

Individuals should be trained in accordance with applicable regulatory and company/institution requirements before working with potentially infectious materials. Wear appropriate protective equipment which includes but is not limited to protective eyewear, face shield, clothing/laboratory coat, and gloves. Biological samples such as enrichments have the potential to transmit infectious diseases including Biological Safety Level 2 (BSL 2) organisms. After use, all containers and any other contaminated materials must be sterilized or disposed of by appropriate internal procedures and in accordance with local legislations.

General Preparation

- (a) Use aseptic techniques.
- (b) Clean the workstations with a disinfectant of choice before and after use. (Sodium hypochlorite solution, phenol solution, quaternary ammonium solution, etc.).
- (c) Wear personal protective equipment (PPE).

Sample Preparation

For detection, add a pre-weighed dose of AquaCHROM ECC to each sterile transparent polypropylene bottle or Whirl-Pak[®] Stand-up bag containing a 100 mL water sample. Close the containers, shake, and incubate at 35–37°C for 18–24 h. After incubation, determine the results based on the color of the liquid.

For enumeration, add a pre-weighed dose of AquaCHROM ECC to each sterile transparent polypropylene bottle containing a 100 mL water sample. Close the container and shake. Pour the 100 mL water sample into the wells of a 48-well Deep well plate (approximately 2 mL per well). Incubate at 35–37°C for 18–24 h. After incubation, determine the results based on the color of the liquid in each well.

Analysis

Presence of *E. coli* will turn the water sample green to blue-green. If the water turns yellow, non-*E. coli* coliform bacteria are present. The MPN can be determined by referring to the AquaCHROM ECC MPN Table (Table 1).

Confirmation

If desired, AquaCHROM ECC enriched samples can be streaked onto either MI agar (tap water, well water and lake water) or onto m-Endo medium or LES Endo Agar (bottled water) for confirmation. On MI agar, blue colonies under normal/ambient light are *E. coli*. When exposed to longwave ultraviolet light (366 nm), *E. coli* will fluoresce blue/green, while blue/white fluorescence indicates coliforms other than *E. coli*. On m-Endo medium, colonies will be pink to dark red with a green metallic surface sheen. Further confirmation can be conducted as needed, as outlined in the appropriate reference method (EPA 1604 or FDA/BAM Ch. 4).

Validation Study

This validation study was conducted under the AOAC Research Institute *Performance Tested Method*SM (PTM) Program and the *AOAC INTERNATIONAL Methods Committee Guidelines for Validation of Microbiological Methods for Food and Environmental Surfaces,* Appendix J (4). Method developer studies were conducted in the laboratory of CHROMagar (Paris, France) which included the inclusivity/exclusivity study, product consistency and stability studies, and robustness testing. The independent laboratory study was conducted by Q Laboratories (Cincinnati, OH) which included matrix studies comparing the AquaCHROM ECC method to the EPA 1604 reference method for tap water, well water, and lake water for detection and enumeration of *E. coli* and coliform bacteria, and to the FDA/BAM Ch. 4 reference method for bottled water for detection of *E. coli* and coliform bacteria.

Reference Cultures

Microorganisms used in this study were obtained from the American Type Culture Collection (ATCC[®]; Manassas, VA), the National Collection of Type Cultures (NCTC; Public Health England, Salisbury, UK), the Collection Institut Pasteur (CIP; Paris, France), the German Collection of Microorganisms and Cell Cultures GmbH (DSM; DSMZ; Leibniz Institute, Germany), the Q Laboratories Culture Collection (QL; Cincinnati, OH), and the CHROMagar Strain Collection (AR; Paris, France).

Method Developer Studies

Inclusivity and exclusivity study methodology.—The inclusivity and exclusivity study examined the ability of the AquaCHROM ECC method to detect a variety of *E. coli* and coliforms target species and to distinguish those from non-target species. For inclusivity, 59 and 51 different isolates of *E. coli* and coliforms, respectively, were selected (Tables 2 and 3). For each strain, a 100 mL water sample was inoculated with approximately 10^2 cfu/100 mL. For exclusivity, 87 isolates of related non-coliform *Enterobacteriaceae* strains and other strains relevant to the matrices were selected (Table 4). For each strain, a 100 mL water sample was inoculated with approximately selected in a randomized blind coded fashion so that analyst did not know the identity of the test samples. One vial of AquaCHROM ECC powder was added to each 100 mL water sample. Inoculated media were incubated at $36 \pm 1^{\circ}$ C for 18-24 h.

Inclusivity/exclusivity study results.—Of the *E. coli* inclusivity strains tested, 58 were detected as green in color, one *E. coli* strain serotype O157 was detected as yellow in color and there was no undetected strain (Table 2). Of the coliform inclusivity strains tested, 49 were detected as yellow in color, one isolate was detected as green in color, namely *Citrobacter freundii* AR5663, and one was not detected. The strain not detected was *Hafnia* sp. (Table 3). Of the exclusivity strains tested, 81

were not detected by AquaCHROM ECC, and 6 were detected (Table 4). The strains detected were *Aeromonas* sp. (as yellow in color), *Salmonella enterica* subsp. *enterica* (serovar Abaetetuba) (as greenish blue in color), *Shigella sonnei* (as greenish yellow in color), *Shigella boydii*, *Salmonella enterica* subsp. *enterica* (serovar Worthington), *Salmonella enterica* subsp. *arizonae* (as green in color).

Product consistency and stability studies methodology. —This study examined the lot-to-lot variability and product stability. Selected lots that are near the expiration date, near the middle of the expiration period, and recently manufactured were tested. One target coliform isolate (*E. coli* ATCC 8739 at 1–5 cfu/100 mL, source: feces) and one non-target isolate (*Staphylococcus aureus* subsp. *aureus* ATCC 25923 at 10⁴ cfu/100 mL, source: clinical isolate) were used for the study. Ten portions of each isolate (*E. coli* and *S. aureus*) for each production lot of AquaCHROM ECC were tested. One vial of AquaCHROM ECC powder was added to each 100 mL test portion. Samples were blind-coded and randomized to that the analyst did not know the identity of the test samples. Inoculated media were incubated at $36 \pm 1^{\circ}$ C for 18–24 h.

Product consistency and stability studies results. —The POD statistical analysis was used to compare the performance of the different lots and storage time points of AquaCHROM ECC (5). No growth was observed with all the test portions inoculated with the non-target isolate. While eight out of 10 target isolate portions were positive in the oldest lot, and 10 out of 10 were positive in the newer lots, the POD analysis between the AquaCHROM ECC lots indicated that there was no significant statistical difference, with 95 % confidence, between the lots. A summary of POD analyses is presented in Table 5.

Robustness Study methodology.—Incubation temperature and incubation time were varied above and below the nominal test condition ($36 \pm 1^{\circ}$ C for 18–24 h) using a factorial design to evaluate the ability of the AquaCHROM ECC method to remain unaffected by small variations. In addition, testing was conducted at 25°C to simulate room temperature conditions. One target coliform isolate (*E. coli* ATCC 8739 at 1–5 cfu/100 mL) and one non-target isolate (*S. aureus* subsp. *aureus* ATCC 25923 at 10⁴ cfu/100 mL) were used to inoculate 100 mL sterile distilled water test portions. Ten portions of each isolate (*E. coli* and *S. aureus*) were tested. One production lot of AquaCHROM ECC was used for this study. One vial of AquaCHROM ECC powder was added to each 100 mL test portion. Samples were blind-coded and randomized to that the analyst did not know the identity of the test samples.

Robustness Results.—The POD statistical analysis was used to compare the different treatment combinations (time and temperature of enrichment) to the nominal growth conditions. No growth was observed with the test portions inoculated with the non-target isolate. The analysis indicated a significant difference at the 16 h incubation time, especially at 34°C. Therefore, test portions should always be incubated at least 18 h. The study also showed that the AquaCHROM ECC can be incubated at 25°C (room temperature) for an extended enrichment time (36 h) and still give consistent results when compared to the nominal test condition. A summary of POD analyses is presented in Table 6.

Independent Laboratory Studies

The full matrix study was performed by the independent laboratory. The AquaCHROM ECC method was compared to the EPA 1604 reference method in qualitative and quantitative study designs for tap water, well water, and lake water, and to the FDA/BAM Chapter 4 reference method in a qualitative study design for bottled water.

The study outline consisted of a matrix study for qualitative analysis following an unpaired study design at three levels of contamination (0 cfu/100 mL), (0.2–2 cfu/100 mL), (5–10 cfu/100 mL) and a matrix study for quantitative analysis following an unpaired study design at four levels of contamination (0 cfu/100 mL), (1–50 cfu/100 mL), (51–100 cfu/100 mL), (101–150 cfu/100 mL).

Preparing Levels for Natural Contamination.—Well water and lake water were found to have natural coliform contamination after screening; however, the levels were too high for the levels specified in the protocol. A portion of each contaminated water matrix was filter sterilized to reduce the amount of natural contamination. The filtered material for each water type was used to dilute the contaminated water in order to create the appropriate test levels required for the study.

Organism Preparation and Inoculation for Artificial Contamination.—Natural contamination of coliforms or *E. coli* were not found in tap water or bottled water matrixes; therefore, artificial contamination was conducted. The waters were artificially contaminated as follows: *E. coli* ATCC 25922 (source: clinical isolate) was used to inoculate tap water (qualitative & high level of quantitative), *Citrobacter freundii* ATCC 8090 (source: unknown) was used to inoculate tap water (low and medium levels of quantitative), and *E. coli* QL 41411.1 was used to inoculate bottled water.

All cultures were propagated on Tryptic Soy Agar with 5% Sheep Blood (SBA) from a stock culture stored at -70°C. The SBA was incubated at $35 \pm 1^{\circ}$ C for 24 ± 2 h before transferring a single colony to Brain Heart Infusion (BHI) broth and incubating at $35 \pm 1^{\circ}$ C for 24 ± 2 h. Using BHI broth as the diluent, the cultures were diluted to the proper contamination levels.

EPA 1604 Reference Method.—For tap water, well water, and lake water, each 100 mL test portion was filtered using sterile, white, gridded, 47 mm diameter, 0.45 μ m pore size filters for enumeration of bacteria. The filter was then transferred to MI Agar and incubated at 35 ± 0.5°C for 24 h.

After incubation, colonies were inspected for the presence of blue color and for fluorescence under longwave ultraviolet light (UV), 366 nm. Total coliforms are those bacteria that produce fluorescent colonies upon exposure to longwave UV light after culturing on MI agar. The fluorescent colonies can be blue-white (coliforms other than *E. coli*) or blue-green (*E. coli*). Non-fluorescent blue colonies, which rarely occur, were added to the total count because the fluorescence can be masked by the blue color.

FDA/BAM Chapter 4, Enumeration of Escherichia coli and the Coliform Bacteria.—For bottled water analysis, each 100 mL test portion was filtered using sterile, white, gridded, 47 mm diameter, 0.45 μ m pore size filters (or equivalent, as specified by the manufacturer) for enumeration of bacteria. The filter was then transferred to m-Endo medium and incubated at 35 ± 0.5°C for 22–24 h. After incubation, pink to dark red colonies with green metallic surface sheens were counted. The sheens varied from pinpoint to complete coverage of the colonies. Use of a low power, dissecting microscope was used to examine filters.

AquaCHROM ECC detection method.—For each water matrix, a 100 mL test portion was placed into a transparent vessel. A pre-weighed dose (1 vial) of AquaCHROM ECC was added to each portion. The vessel was closed and shaken until dissolution. It was then incubated at 35–37°C for 18– 24 h. Presence of *E. coli* will turn the water sample green to blue-green. If the water turns yellow, non-*E. coli* coliform bacteria are present.

AquaCHROM ECC MPN Method.—For tap water, well water and lake water matrixes, each 100 mL test portion was poured into a dispenser. A pre-weighed dose (1 vial) of AquaCHROM ECC was added to each portion. The vessel was closed and shaken until dissolution. The 100 mL portion was poured into the wells of a 48-well Deep well plate (approximately 2 mL per well). The plates were then incubated at 35–37°C for 18–24 h. The presumptive results were read and recorded at 18 h and at 24 h. Presence of *E. coli* will turn the water sample green to blue-green. If the water turns yellow, non-*E. coli* coliform bacteria are present. The MPN was determined by referring to the AquaCHROM ECC MPN Table (Table 1).

Qualitative Results.—Differences between the POD values were calculated for the AquaCHROM ECC presumptive and confirmed results (Table 7), as well as for the AquaCHROM ECC confirmed and reference method results (Table 8). All presumptive positive results confirmed positive, and there were no presumptive negative results that confirmed positive. For the reference method results (EPA 1604 and FDA/BAM Ch.4), any colonies seen on the reference method plates indicated a positive result for the reference method test portion. The positive colony counts on the reference method plates were averaged to determine the cfu/100 mL for each contamination level. The 0 cfu/100 mL level was not tested for well water and lake water since natural contamination was present. The AquaCHROM results were all "green" for the well water portions and all "yellow" for the lake water portions. This corresponded with results obtained by the Bruker MALDI Biotyper Method (6), as *E*. *coli* was isolated and confirmed from each positive well water test portion, and *Enterobacter bugandensis* and *Enterobacter asburiae* were isolated and confirmed from the lake water test portions. Although there were some differences seen between the AquaCHROM ECC results and the reference methods results, the POD analysis between the methods indicated that there was no significant difference, with 95 % confidence. A summary of POD analyses is presented in Tables 7 and 8.

Quantitative Results.—Statistical analysis was conducted for each *E. coli* and non-*E. coli* coliform contamination level for tap water, well water and lake water matrixes. Logarithmic transformation of the counts (cfu/100 mL) was performed and the difference of means, with 90 and 95% confidence intervals, between the candidate method and the reference method was determined for each matrix and each contamination level. The difference of means and confidence intervals were calculated using the Least Cost Formulations Quantitative Analysis for Micro Methods v1.2 (Virginia Beach, VA) worksheet, supplied by the AOAC Research Institute. The 90 % confidence interval of the bias between the two methods fell between -0.5 to 0.5 Log₁₀ for each concentration indicating equivalence between the two methods (7).

Repeatability standard deviation (s_r) was calculated for AquaCHROM ECC MPN method and the reference method for tap water, well water, and lake water. A Grubbs outlier test was performed for the AquaCHROM ECC MPN Method and the reference method to determine if any outliers were present, and none were detected. The 90% CIs on the difference in results between the AquaCHROM ECC and the reference method for each level of each matrix fell within the -0.5, 0.5 range, indicating that the methods were statistically equivalent for tap water, well water and lake water. A summary of the study data are presented in Table 9. Figures 1–3 display graphs comparing the Log₁₀ values of the candidate method and the reference method.

Discussion

In the inclusivity study, all *E. coli* strains tested were positive green to blue-green, with the exception of *E. coli* O157, which is expected. The efficacy of the β -glucuronidase character allows the identification of *E. coli* but a small percentage of *E. coli* strains, such as *E. coli* serotype O157, is β glucuronidase negative (7, 8). Those strains are detected as yellow in color with AquaCHROM ECC. The β -glucuronidase phenotype in other *Enterobacteriaceae* is rare, one *C. freundii* isolate was found positive in green color. A few false positive results were detected, including 3 strains of *Salmonella enterica*, 2 species of *Shigella* and 1 strain of *Aeromonas*. One strain of *Hafnia* sp. was found to be false negative.

In this study, AquaCHROM ECC showed lot-to-lot consistency and stability. The method allows the user to obtain results within 36 h at room temperature, i.e., 25°C, in this case there would not be need of an incubator.

The AquaCHROM ECC method evaluated in this study showed no statistical difference in detection of *E. coli* and coliform bacteria compared to EPA 1604 (tap water, well water, and lake water) and FDA/BAM Ch. 4 (bottled water) and was statistically equivalent for enumeration of *E. coli* and coliform bacteria to the EPA 1604 for tap water, well water, and lake water in 100 mL water samples.

The method allows the user to obtain accurate results within 24 h in the matrixes evaluated for the presence of coliforms in water samples incubated at 35–37°C. The non-agar-based medium was easy to interpret based on a color change to green (*E. coli*) or yellow (non-*E. coli* coliforms) that can be read under normal lighting conditions. The AquaCHROM ECC method required no additional media or Petri dishes to perform, creating an easier workflow by eliminating all the confirmation steps needed for the reference method. The independent laboratory analyst stated how straightforward and easy the method was to perform. One item of note, during the matrix study at the independent laboratory the polypropylene dispenser bottles provided by the client did not hold up well to repeated autoclave decontamination cycles (121°C at 15 psi for 60 min) between uses and had to be discarded. Those bottles might have been tightly closed during the autoclave decontamination cycles leading to their deformation. It is therefore recommended to loosely close the bottles when autoclaved for decontamination to ensure multiple use.

Conclusion

The data from this study supports the product claim that the AquaCHROM ECC is an effective method for the detection of *E. coli* and coliforms in 100 mL water samples for all matrixes evaluated (tap water, well water, lake water, and bottled water) and for enumeration of *E. coli* and coliforms in 100 mL water samples in tap water, well water, and lake water. The method simple to use, requires no filtration or UV light, and allows the end user to acquire accurate results within 24 h of incubation. This is a significantly shorter timeframe than the EPA 1604 and FDA/BAM Chapter 4 methods, and will allow laboratories to process samples faster, while still obtaining statistically equivalent results.

Acknowledgments

Submitting Company: CHROMagar 4 Place du 18 Juin 1940 75006 Paris, France Independent Laboratory: Q Laboratories. 1930 Radcliff Drive, Cincinnati, OH 45204 Reviewers:

Thomas Hammack, U.S. Food and Drug Administration, Center for Food Safety and Nutrition, College Park, MD

James Agin, Independent Consultant, Cincinnati, OH

Wayne Ziemer, Independent Consultant, Loganville, GA

Conflict of Interest

All authors declare no conflict of interest.

References

- Questions & Answers: Coliform Bacteria and Drinking Water. Washington State Department of Health. (Accessed January 2022) <u>https://www.doh.wa.gov/Portals/1/Documents/Pubs/331-</u> <u>181.pdf</u>
- 2. U.S. Environmental Protection Agency (EPA) Method 1604 (2002), Total Coliforms and *Escherichia coli* in Water by Membrane Filtration Using a Simultaneous Detection Technique (MI Medium)
- Food and Drug Administration Bacteriological Analytical Manual Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. July 2020BAM Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria | FDA <u>BAM Chapter 4: Enumeration of Escherichia coli and the</u> <u>Coliform Bacteria | FDA [Accessed January 2022]</u>
- Official Methods of Analysis (2019), 21st Ed., Appendix J, AOAC INTERNATIONAL, Rockville, MD, <u>http://www.eoma.aoac.org/app_j.pdf</u> [Accessed January 2022]
- Wehling, P., LaBudde, R. A., Brunelle, S. L., and Nelson, M. T. (2011) *Probability of Detection (POD)* as a Statistical Model for the Validation of Qualitative Methods. Journal of AOAC International. 94, 335-47
- 6 *Official Methods of Analysis* (2019) 21st Ed., AOAC INTERNATIONAL, Rockville, MD, Method **2017.09**. www.eoma.aoac.org [Accessed April 2022]
- 7. AOAC SMPR 2020, Version 4.0: Standard Method Performance Requirements (SMPRs) for quantitative Microbiology Methods for Food and Environmental Samples
- Kilian, M., and P. Bulow. (1979). Rapid identification of Enterobacteriaceae. II. Use of glucuronidase detecting agar medium (PGUA agar) for the identification of *E. coli* in primary cultures of urine samples. *Acta Pathol. Microbiol. Scand.* Sect. B. **87**, 271-6
- Rice, E. W. Allen, M. J., and Edberg, S. C. (1990). Efficacy of β-Glucuronidase Assay for Identification of *Escherichia coli* by the Defined-Substrate Technology. *Appl. Environ. Microbiol.* 56, 1203-5

10. Blodgett, R. (Content current as of: 10/09/2020). BAM Appendix 2: Most Probable Number from Serial Dilutions. U.S. Food & Drug. https://www.fda.gov/food/laboratory-methods-food/bamappendix-2-most-probable-number-serial-dilutions

Positive			
wells	MPN	Lower 95 %	Upper 95 %
0	0	0	3.8
1	1.1	0.14	7.8
2	2.1	0.52	8.8
3	3.2	1	10
4	4.4	1.6	12
5	5.5	2.2	13
6	6.7	2.9	15
7	7.9	3.7	17
8	9.1	4.5	19
9	10	5.3	20
10	12	6.2	22
11	13	7.1	24
12	14	8.1	26
13	16	9	28
14	17	10	30
15	19	11	31
16	20	12	34
17	22	13	36
18	24	15	38
19	25	16	40
20	27	17	42
21	29	18	45
22	31	20	47
23	33	21	50
24	35	23	53
25	37	24	55
26	39	26	58
27	41	28	61
28	44	30	65
29	46	32	68
30	49	34	72
31	52	36	76
32	55	38	80
33	58	40	84
34	62	43	89
35	65	45	94
36	69	48	99
37	74	51	110
38	78	55	110
39	84	58	120
40	90	62	130
41	96	67	140
42	100	72	150
43	110	78	160
44	120	85	180
45	140	93	210
46	160	100	250
47	190	120	320
48	>190	120	-

Table 1: AquaCHROM ECC MPN Table^a

^aBased on BAM Appendix 2 (10).

	•						
No.	Target strain	Source	Origin	Result			
1	E. coli	ATCC ^a 8739	Feces	Positive, green			
2	E. coli	ATCC 11775	Urine	Positive, green			
3	E. coli	ATCC 25922	Clinical isolate, USA	Positive, green			
4	<i>E. coli</i> 0157:H7	ATCC 35150	Feces	Negative, yellow ^b			
5	E. coli	ATCC 35218	Canine	Positive, green			
6	E. coli	ATCC 51446	Clinical isolate, France	Positive, green			
7	E. coli	CIP ^c 52.168	Child, feces	Positive, green			
8	E. coli	CIP 52.172	Feces	Positive, green			
9	E. coli	CIP 103982	Clermont-Ferrand, France	Positive, green			
10	E. coli	CIP 107196	Human	Positive, green			
11	E. coli	NCTC ^d 13846	Human blood culture	Positive, green			
12	E. coli	NCTC 13476	Not available	Positive, green			
13	E. coli	DSM ^e 1103	Clinical isolate	Positive, green			
14	E. coli	DSM 22312	Urinary tract infections	Positive, green			
15	E. coli	AR ^f 3740	Clinical isolate, France	Positive, green			
16	E. coli	AR3857	Clinical isolate, France	Positive, green			
17	E. coli	AR3858	Clinical isolate, France	Positive, green			
18	E. coli	AR3859	Clinical isolate, France	Positive, green			
19	E. coli	AR4076	Clinical isolate, France	Positive, blue green			
20	E. coli	AR4077	Clinical isolate, France	Positive, green			
21	E. coli	AR4524	Foodborne, Japan	Positive, green			
22	E. coli	AR4526	Not available	Positive, green			
23	E. coli	AR4531	Not available	Positive, green			
24	E. coli	AR4732	Foodborne, Switzerland	Positive, green			
25	E. coli	AR4733	Foodborne, Switzerland	Positive, green			
26	E. coli	AR4734	Foodborne, Switzerland	Positive, green			
27	E. coli	AR5011	Clinical isolate	Positive, green			
28	E. coli	AR5012	Clinical isolate	Positive, blue green			
29	E. coli	AR5013	Clinical isolate	Positive, green			
30	E. coli	AR5014	Clinical isolate	Positive, green			
31	E. coli	AR5030	Foodborne	Positive, green			
32	E. coli	AR5179	Clinical isolate, France	Positive, green			
33	E. coli	AR5189	Clinical isolate, France	Positive, green			
34	E. coli	AR5190	Clinical isolate, France	Positive, green			
35	E. coli	AR5238	Clinical isolate, France	Positive, green			
36	E. coli	AR5303	Foodborne, Japan	Positive, blue green			
37	E. coli	AR5305	Foodborne, Japan	Positive, blue green			
38	E. coli	AR5306	Foodborne, Japan	Positive, green			
39	E. coli	AR5360	Foodborne	Positive, green			
40	E. coli	AR5387	Foodborne	Positive, green			
41	E. coli	AR5388	Foodborne Positive, green				

Table 2. AquaCHROM ECC Inclusivity Study Results for *E. coli*

42	E. coli	AR5389	Foodborne	Positive, green	
43	E. coli	AR5414	Clinical isolate	Positive, green	
44	E. coli	AR5415	Clinical isolate	Positive, green	
45	E. coli	AR5416	Clinical isolate	Positive, green	
46	E. coli	AR5417	Clinical isolate	Positive, blue green	
47	E. coli	AR5428	Foodborne	Positive, green	
48	E. coli	AR5433	Foodborne, France	Positive, blue green	
49	E. coli	AR5434 Foodborne, France		Positive, green	
50	E. coli	AR5435	Foodborne, France	Positive, green	
51	E. coli	AR5436	Foodborne, France	Positive, green	
52	E. coli	AR5438	Foodborne, France	Positive, green	
53	E. coli	AR5440	Foodborne, France	Positive, green	
54	E. coli	AR5442	Foodborne, France	Positive, green	
55	E. coli	AR5458	Clinical isolate, Germany	Positive, green	
56	E. coli	AR5510	Clinical isolate, France	Positive, blue green	
57	E. coli	AR5664	Clinical isolate, France	Positive, green	
58	E. coli	AR5665	Clinical isolate, France	Positive, blue green	
59	E. coli	AR5666	Clinical isolate, France	Positive, blue green	

^aATCC = American Type Culture Collection, Manassas, VA.

 $^{\text{b}}$ *E. coli* serotype O157 are β -glucuronidase negative being detected as yellow with AquaCHROM ECC.

^cCIP = Collection Institut Pasteur, Paris, France.

^dNCTC = National Collection of Type Cultures, Public Health England, Salisbury, UK.

^eDSM = DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Leibniz Institute, Germany.

^fAR = CHROMagar Strain Collection, Paris, France.

No.	Target strain	Source	Origin	Result	
1	Citrobacter freundii	ATCC ^a 8090	Not available	Positive, yellow	
2	Cronobacter muytjensii	ATCC 51329 (formerly Enterobacter sakazakii)	Not available	Positive, yellow	
3	Enterobacter cloacae subsp. cloacae	ATCC 13047	Spinal fluid	Positive, yellow	
4	E. cloacae subsp. cloacae	ATCC 35030	Not available	Positive, yellow	
5	Klebsiella aerogenes	ATCC 13048 (formerly Aerobacter aerogenes)	Sputum	Positive, yellow	
6	K. pneumoniae	ATCC BAA-1705	Urine	Positive, yellow	
7	K. pneumoniae subsp. Pneumoniae	ATCC 13883	Not available	Positive, yellow	
8	K. pneumoniae subsp. Pneumoniae	ATCC 700603	Urine	Positive, yellow	
9	K. variicola	ATCC 31488	Soil	Positive, yellow	
10	Serratia marcescens subsp. marcescens	ATCC 13880	Pond water	Positive, yellow	
11	K. pneumoniae	NCTC ^b 13438	Blood, urine	Positive, yellow	
12	Citrobacter amalonaticus	AR ^c 6391	Clinical isolate, France	Positive, yellow	
13	C. farmeri	AR6390	Clinical isolate, France	Positive, yellow	
14	C. freundii	AR3870	Not available	Positive, yellow	
15	C. freundii	AR5662	Clinical isolate, France	Positive, yellow	
16	C. freundii	AR5663	Clinical isolate, France	Positive, green	
17	C. freundii	AR6662	Foodborne, France	Positive, yellow	
18	C. koseri	AR6387	Clinical isolate, France	Positive, yellow	
19	C. sedlakii	AR6389	Clinical isolate, France	Positive, yellow	
20	Citribacter sp.	AR3030	Not available	Positive, yellow	
21	Citrobacter sp.	AR3134	Human Feces	Positive, yellow	
22	Citrobacter sp.	AR3378	Foodborne, France	Positive, yellow	
23	Enterobacter aerogenes	AR5187	Clinical isolate, France	Positive, yellow	
24	E. aerogenes	AR6081	Foodborne, Israel	Positive, yellow	
25	E. agglomerans	AR5646	Laboratory isolate, France	Positive, yellow	
26	E. amnigenus	AR6110	Human Feces	Positive, yellow	
27	E. asburiae	AR6392	Clinical isolate, France	Positive, yellow	
28	E. cloacae	AR5339	Foodborne, Japan	Positive, yellow	
29	E. cloacae	AR5480	Clinical isolate, Japan	Positive, yellow	
30	E. cloacae	AR6002	Clinical isolate, France	Positive, yellow	
31	Enterobacter spp.	AR5965	Human Feces	Positive, yellow	
32	Escherichia hermannii	AR5245	Human Feces	Positive, yellow	
33	E. hermannii	AR5341	Foodborne, Japan	Positive, yellow	
34	Hafnia sp.	AR5850	Not available	No growth	
35	H. alvei	AR3862	Human Feces	Positive, yellow	
36	H. alvei	AR5331	Foodborne, Japan	Positive, yellow	
37	Klebsiella oxytoca	AR5204	Clinical isolate, France	Positive, yellow	
38	K. oxytoca	AR5236	Human Feces	Positive, yellow	
39	K. oxytoca	AR5755	Not available	Positive, yellow	

Table 3. AquaCHROM ECC Inclusivity Study Results for non-E. coli Coliform Bacteria

40	К. охутоса	AR6655	Foodborne, France	Positive, yellow	
41	K. oxytoca	AR5755	Not available	Positive, yellow	
42	K. pneumoniae	AR5186	Not available	Positive, yellow	
43	K. pneumoniae	AR5251	Clinical isolate, France	Positive, yellow	
44	K. pneumoniae	AR5995	Clinical isolate, France	Positive, yellow	
45	K. pneumoniae	AR6663	Foodborne, France	Positive, yellow	
46	Serratia liquefaciens	AR3964	Foodborne, France	Positive, yellow	
47	S. liquefaciens	AR4046	Clinical isolate, France	Positive, yellow	
48	S. liquefaciens	AR6146	Chicken	Positive, yellow	
49	S. marcescens	AR5568	Clinical isolate, France	Positive, yellow	
50	S. plymuthica	AR5492	Raw milk	Positive, yellow	
51	S. rubidaea	AR6664	Sweet bell pepper	Positive, yellow	

^aATCC = American Type Culture Collection, Manassas, VA.

^bNCTC = National Collection of Type Cultures, Porton Down, Salisbury, UK.

^cAR = CHROMagar Strain Collection, Paris, France.

Table 4. AquaCHROM ECC Exclusivity Study Results

No.	Non-target strains	Source	Origin	Result	
1	Clostridium perfringens	ATCC ^a 13124	Not available	No growth	
2	Enterococcus casseliflavus	ATCC 700327	Not available	No growth, yellowish	
3	E. gallinarum	ATCC 49573	Chicken intestine	No growth	
4	E. hirae	ATCC 8043	Not available	No growth	
5	E. faecalis	ATCC 29212	Urine	No growth	
6	E. faecalis	ATCC 51299	Peritoneal fluid	No growth	
7	Listeria ivanovii subsp. ivanovii	ATCC 19119	Sheep	No growth	
8	L. monocytogenes	ATCC 19115	Not available	No growth	
9	Macrococcus caseolyticus	ATCC 35662 (formerly S. cohnii subsp. cohnii)	Not available	No growth	
10	Paeniclostridium sordellii	ATCC 9714 (formerly Clostridium sordellii)	Not available	No growth	
11	Pseudomonas aeruginosa	ATCC 9027	Not available	No growth	
12	P. aeruginosa	ATCC 10145	Not available	No growth	
13	Proteus vulgaris	ATCC 6380	Not available	Growth, uncolored	
14	Salmonella enterica subsp. enterica (serovar Abaetetuba)	ATCC 35640	Creek water	Positive, greenish blue	
15	<i>S. enterica</i> subsp <i>. enterica</i> (serovar Typhimurium)	ATCC 13311	Feces, food poisoning	Growth, uncolored	
16	Shigella boydii	ATCC 9207	Not available	Positive, green	
17	S. dysenteriae	ATCC 13313	Foreign seaman	No growth	
18	S. flexneri	ATCC 12022	Not available	Growth, uncolored	
19	S. sonnei	ATCC 9290	Not available	Positive, greenish yellow	
20	Staphylococcus aureus subsp. aureus	ATCC 43300	Clinical isolate, US	No growth	
21	S. aureus subsp. aureus	ATCC 25923	Clinical isolate, US	No growth	

22	S. epidermidis	ATCC 12228	Not available	No growth	
23	S. haemolyticus	ATCC 29970	Skin	No growth	
24	S. lentus	ATCC 700403	Not available	No growth	
25	S. saprophyticus subsp. saprophyticus	ATCC 15305	Urine	No growth	
26	S. simulans	ATCC 27851	Skin	No growth	
27	S. warneri	ATCC 49454	Not available	No growth	
28	S. xylosus	ATCC 29971	Skin	No growth	
29	Streptococcus agalactiae	ATCC 13813	Not available	No growth	
30	S. gallolyticus	ATCC 9809 (formerly Streptococcus bovis)	Not available	No growth	
31	S. dysgalactiae subsp. dysgalactiae	ATCC 27957	Bovine udder infection	No growth	
32	Yersinia enterocolitica subsp. enterocolitica	ATCC 23715	Blood, petechiae, anterior eye chamber	No growth	
33	Y. pseudotuberculosis	ATCC 29833	Turkey	No growth	
34	Listeria innocua	CIP ^b 80.11T	Bovine, brain	No growth	
35	Streptococcus equinus	CIP 102504T	Not available	No growth	
36	S. uberis	CIP 103219T	Not available	No growth	
37	S. uberis	CIP 105450	Bovine udder infection	No growth	
38	Yersinia enterocolitica palearctica	CIP 101776	Blood	Growth, uncolored	
39	Acinetobacter baumannii	AR ^c 5624	Clinical isolate, France	Growth, uncolored	
40	Acinetobacter sp.	AR5563	Clinical isolate, France	No growth	
41	Aeromonas sp.	AR3881	Foodborne	No growth	
42	Aeromonas sp.	AR3898	Not available	Positive, yellow	
43	Clostridioides difficile	AR5681	Not available	No growth	
44	C. difficile	AR5682	Not available	No growth	
45	Enterococcus avium	AR5258	Clinical isolate, France	No growth	
46	E. durans	AR5257	Not available	No growth	
47	E. faecalis	AR5289	Clinical isolate, France	No growth	
48	E. faecalis	AR5313	Clinical isolate, France	No growth	
49	E. faecalis	AR5316	Clinical isolate, France	No growth	
50	Enterococcus sp.	AR5201	Clinical isolate, France	No growth	
51	Enterococcus sp.	AR5312	Clinical isolate, France	No growth	
52	E. gallinarum	AR5266	Not available	No growth	
53	E. gallinarum	AR5218	Not available	No growth	
54	E. faecalis	AR5101	Clinical isolate, France	No growth	
55	E. faecium	AR5102	Clinical isolate, France	No growth	
56	E. faecium	AR5164	Clinical isolate, France	No growth	
57	E. faecium	AR4437	Foodborne	No growth	
58	Listeria monocytogenes	AR4580	Clinical isolate, France	No growth	
59	Legionella pneumophila	Not available	No growth		

60	L. pneumophila	AR4666	Not available	No growth	
61	P. aeruginosa	AR5196	Clinical isolate, France	Growth, uncolored	
62	P. aeruginosa	AR5197	Clinical isolate, France	Growth, uncolored	
63	P. aeruginosa	AR5847	Not available	No growth	
64	Proteus mirabilis	AR5479	Clinical isolate, Finland	Growth, uncolored	
65	P. mirabilis	AR3022	Not available	Growth, uncolored	
66	Salmonella enterica subsp. arizonae	AR3910	Not available	Positive, green	
67	<i>S. enterica</i> subsp <i>. enterica</i> (serovar Dublin)	AR3580	Clinical isolate, France	Growth, uncolored	
68	<i>S. enterica</i> subsp <i>. enterica</i> (serovar Typhi)	AR4052	Foodborne	Growth, uncolored	
69	<i>S. enterica</i> subsp <i>. enterica</i> (serovar Typhi)	AR3104	Not available	Growth, uncolored	
70	<i>S. enterica</i> subsp <i>. enterica</i> (serovar Typhi)	AR3105	Not available	Growth, uncolored	
71	<i>S. enterica</i> subsp <i>. enterica</i> (serovar Typhimurium)	AR3015	Not available	Growth, uncolored	
72	S. enterica subsp. enterica (serovar Worthington)	ica subsp. enterica (serovar Worthington) AR3911 Not available		Positive, green	
73	Salmonella sp.	AR4053	Foodborne	Growth, uncolored	
74	Salmonella sp.	AR3011	Not available	Growth, uncolored	
75	Salmonella sp.	AR3924	Not available	Growth, uncolored	
76	Salmonella sp.	AR3925	Not available	Growth, uncolored	
77	S. aureus	AR3916	Not available	No growth	
78	S. intermedius	AR5008	Clinical isolate, France	No growth	
79	Streptococcus agalactiae	AR4186	Clinical isolate, France	No growth	
80	S. oralis	AR5649	Clinical isolate, France	No growth	
81	S. pyogenes	AR5255	Clinical isolate, France	No growth	
82	Streptococcus sp.	AR5408	Clinical isolate, France	No growth	
83	Streptococcus sp.	AR5311	Clinical isolate, France	No growth	
84	Vibrio cholerae	AR4482	Foodborne, Japan	No growth	
85	V. cholerae	AR4748	Foodborne, Japan	No growth	
86	V. parahaemolyticus	AR4493	Foodborne, Japan	No growth	
87	V. vulnificus	No growth			

^aATCC = American Type Culture Collection, Manassas, VA. ^bCIP = Collection Institut Pasteur, Paris, France.

^cAR = CHROMagar Strain Collection, Paris, France.

	Lot age,	NIC	h			1 - + N1 -	Lot age,			DOC d			
LOT NO.	months	Na	Xn	PODA	95% CI	LOT NO.	months	N	Х	POCBu	95% CI ^s	apodcabe	95% CI
<i>E. coli</i> ATCC ^g 87	39 (target)												
P002172 ^h	12	10	10	1.0	0.72, 1.00	P002383 ⁱ	8	10	10	1.0	0.72, 1.00	0.0	-0.28, 0.28
P001789 ^j	27	10	8	0.8	0.49, 0.94	P002383	8	10	10	1.0	0.72, 1.00	-0.2	-0.51, 0.11
P001789	27	10	8	0.8	0.49, 0.94	P002172	12	10	10	1.0	0.72, 1.00	-0.2	-0.51, 0.11
Staphylococcus	aureus ATCC	25923 (non-tai	rget)									
P002172	12	10	0	0.0	0.0, 0.28	P002383	8	10	0	0.0	0.0, 0.28	0.0	-0.28, 0.28
P001789	27	10	0	0.0	0.0, 0.28	P002383	8	10	0	0.0	0.0, 0.28	0.0	-0.28, 0.28
P001789	27	10	0	0.0	0.0, 0.28	P002172	12	10	0	0.0	0.0, 0.28	0.0	-0.28, 0.28

Table 5. Product Consistency (lot-to-lot) and Stability of AquaCHROM ECC – POD Comparison

^aN = Number of test portions.

^bx = Number of positive test portions.

^cPOD_A = Positive outcomes divided by the total number of trials first member of pair.

 $^{d}POD_{B}$ = Positive outcomes divided by the total number of trials second member of pair.

^edPOD_{AB} = Difference in POD between the lots.

^f95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^gATCC = American Type Culture collection, Manassas, VA.

^hLot P001789 was produced October 17, 2019.

ⁱLot P002172 was produced January 13, 2021.

^jLot P002383 was produced May 7, 2021.

Test	Tes	t Parameters		Te	est Conditio	n Results	Nom	ninal Condit	ion ^e Results	_	
Condition ^a	ndition ^a Incubation time Incubation temperature		N ^b	xc	POD_T^d	95% CI	х	POD_N^f	95% CI	dPOD _{TN} ^g	95% Cl ^h
E. coli ATCC ⁱ	8739 (target)										
1	16h	34°C	10	0	0.0	0.0, 0.28	9	0.9	0.60, 1.00	-0.9	-1.0, -0.49
2	16 h	38°C	10	6	0.6	0.31, 0.83	9	0.9	0.60, 1.00	-0.3	-0.60, 0.08
3	26 h	34°C	10	8	0.8	0.49, 0.94	9	0.9	0.60, 1.00	-0.1	-0.43, 0.24
4	26 h	38°C	10	8	0.8	0.49, 0.94	9	0.9	0.60, 1.00	-0.1	-0.43, 0.24
5	36 h	25°C	10	9	0.9	0.60, 1.00	9	0.9	0.60, 1.00	0.0	-0.32, 0.32
Staphylococc	us aureus ATCC 2	5923 (non-target)									
1	16h	34°C	10	0	0.0	0.0, 0.28	0	0.0	0.0, 0.28	0.0	-0.28, 0.28
2	16 h	38°C	10	0	0.0	0.0, 0.28	0	0.0	0.0, 0.28	0.0	-0.28, 0.28
3	26 h	34°C	10	0	0.0	0.0, 0.28	0	0.0	0.0, 0.28	0.0	-0.28, 0.28
4	26 h	38°C	10	0	0.0	0.0, 0.28	0	0.0	0.0, 0.28	0.0	-0.28, 0.28
5	36 h	25°C	10	0	0.0	0.0, 0.28	0	0.0	0.0, 0.28	0.0	-0.28, 0.28

Table 6. Robustness study of AquaCHROM ECC – POD Comparison

^aEach test condition is being compared to the nominal test condition. Note: Test conditions 1–5 (36 h at 25°C; 16 h at 34°C; 26 h at 34°C; 16 h at 38°C; and 26 h at 38°C) were compared to the nominal condition in different experiments.

^bN = Number of test portions per condition.

^cx = Number of positive test portions per condition.

^dPOD_T = Positive outcomes divided by the total number of trials per condition.

^eNominal condition = 36°C for 18–24 h.

 $^{\rm f}{\rm POD}_{\rm N}$ = Positive outcomes divided by the total number of trials per nominal condition.

 g dPOD_{TN} = Difference in POD between the test condition and nominal condition.

^h95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

ⁱATCC = American Type Culture collection, Manassas, VA.

			Presumptive result		Confirmed result			_		
Matrix ^a	cfu/100 mL ^b	Nc	Xd	POD _{CP} ^e	95% CI	Х	PODcc ^f	95% CI	dPOD _{CP} ^g	95% Cl ^h
Tap Water	0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47
(100 mL)	1.3	20	11	0.55	0.34, 0.74	11	0.55	0.34, 0.74	0.00	-0.13, 0.13
<i>E. coli</i> ATCC ⁱ 25922	6.2	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47
Well Water	0.5	20	13	0.65	0.43, 0.82	13	0.65	0.43, 0.82	0.00	-0.13, 0.13
(100 mL)	2.8	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47
Lake Water	0.7	20	15	0.75	0.53, 0.89	15	0.75	0.53, 0.89	0.00	-0.13, 0.13
(100 mL)	4	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47
Bottled Water	0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47
(100 mL)	1.8	20	17	0.85	0.64, 0.95	17	0.85	0.64, 0.95	0.00	-0.13, 0.13
<i>E. coli</i> QL ^j 41411.1	6.6	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47

Table 7. AquaCHROM ECC Method Presumptive vs. Confirmed – POD Results

^aMatrix = Well water and lake water were naturally contaminated. Tap water and bottled were artificially contaminated.

^bcfu/100 mL = Colony counts based on the reference method plate results. Counts were averaged based on the number of replicate portions tested.

^cNumber of test portions.

dx = Number of positive test portions.

^ePOD_{CP} = Candidate method presumptive positive outcomes divided by the total number of trials.

 $^{\rm f}{\rm POD}_{\rm CC}$ = Candidate method confirmed positive outcomes divided by the total number of trials.

^gdPOD_{CP}= Difference between the candidate method presumptive result and candidate method confirmed result POD values.

^h95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

ⁱATCC = American Type Culture collection, Manassas, VA.

^jQL = Q Laboratories Culture Collection, Cincinnati, OH.

				AquaCHRON	/I ECC		Reference met	thod ^f	_	
Matrix ^a	cfu/100 mL ^b	Nc	Xd	PODc ^e	95% CI	х	POD _R ^g	95% CI	$dPOD_{C}^{h}$	95% Cl ⁱ
Tap Water	0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
(100 mL)	1.3	20	11	0.55	0.34, 0.74	13	0.65	0.43, 0.82	-0.10	-0.37 0.19
E. coli ATCC ⁱ 25922	6.2	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.43, 0.43
Well Water	0.5	20	13	0.65	0.43, 0.82	8	0.40	0.22, 0.61	0.25	-0.05 0.50
(100 mL)	2.8	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.43, 0.43
Lake Water	0.7	20	15	0.75	0.53, 0.89	11	0.55	0.34, 0.74	0.20	-0.09 0.45
(100 mL)	4	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.43, 0.43
Bottled Water	0	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.43, 0.43
(100 mL)	1.8	20	17	0.85	0.64, 0.95	15	0.75	0.53, 0.89	0.10	-0.15, 0.34
<i>E. coli</i> QL ^k 41411.1	6.6	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.43, 0.43

Table 8. AquaCHROM ECC Method vs. Reference Method – POD Results

^aMatrix = Well water and lake water were naturally contaminated. Tap water and bottled were artificially contaminated.

^bcfu/100 mL = Colony counts based on the reference method plate results. Counts were averaged based on the number of replicate portions tested.

^cN = Number of test portions.

^dx = Number of positive test portions.

^ePOD_c = Candidate method presumptive positive outcomes confirmed positive divided by the total number of trials.

fReference method = EPA 1604 for tap water, well water, and lake water; BAM Ch.4 for bottled water

 $^{g}POD_{R}$ = Reference method confirmed positive outcomes divided by the total number of trials.

^hdPOD_c= Difference between the confirmed candidate method result and reference method result POD values.

¹95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

^jATCC = American Type Culture collection, Manassas, VA.

^kQL = Q Laboratories Culture Collection, Cincinnati, OH.

Table 9. Results of AquaCHROM ECC vs. Reference Method

			AquaCHROM ECC		Reference I	Reference Method ^c			95% CI ^f		90	90% CI	
Matrix	Cont. level ^a	n	Log ₁₀ Mean ^b	Sr	Log ₁₀ Mean	Sr	DOM ^d	SE ^e	LCL ^g	UCL ^h	LCL	UCL	
Tap Water ⁱ (100 mL) C. <i>freundii</i> ATCC [:] 8090 & <i>E. coli</i> ATCC 25922	Uninoculated	5	0.000	NA ^k	0.000	NA	NA	NA	NA	NA	NA	NA	
	Low	5	0.897	0.412	0.977	0.102	-0.081	0.190	-0.518	0.357	-0.434	0.273	
	Medium	5	1.740	0.066	1.737	0.036	0.003	0.034	-0.074	0.081	-0.059	0.066	
	High	5	2.008	0.134	2.024	0.026	-0.017	0.061	-0.157	0.124	-0.130	0.097	
Well Water (100 mL) Naturally contaminated	Low	5	0.414	0.243	0.433	0.170	-0.019	0.133	-0.325	0.287	-0.266	0.228	
	Medium	5	1.621	0.109	1.610	0.046	0.012	0.053	-0.110	0.134	-0.087	0.110	
	High	5	1.983	0.048	1.940	0.028	-0.022	0.025	-0.079	0.036	-0.068	0.024	
Lake Water (100 mL Naturally contaminated	Low	5	0.859	0.120	0.709	0.135	0.151	0.081	-0.036	0.337	0.000	0.301	
	Medium	5	1.734	0.049	1.731	0.032	0.004	0.026	-0.057	0.064	-0.045	0.052	
	High	5	2.052	0.096	2.001	0.019	0.051	0.044	-0.050	0.152	-0.030	0.132	

^aTap Water has an uninoculated level that yielded no recovered growth for all five replicates. Well and lake water were naturally contaminated and therefore have no uninoculated level. ^bMean of five replicate portions, after logarithmic transformation: Log₁₀[CFU/g + (0.1)f]. There were no differences in results between the 18 and 24 h timepoints.

^cReference method is EPA 1604.

^dDOM = Difference of means; mean_{cand} - mean_{ref.}

^eSE = Standard Error of DOM.

^fCI = Confidence interval for DOM.

^gLCL = Lower confidence limit for DOM.

^hUCL = Upper confidence limit for DOM.

ⁱTap water was inoculated with C. freundii (ATCC 8090) at the low and medium levels and with *E. coli* (ATCC 25922) at the high level.

^jATCC = American Type Culture Collection, Manassas, VA.

^kNA = Not applicable.

Figure 1: Method Comparison Results of AquaCHROM ECC vs. EPA 1604 for Tap Water

Figure 2: Method Comparison Results of AquaCHROM ECC vs. EPA 1604 for Well Water

Figure 3: Method Comparison Results of AquaCHROM ECC vs. EPA 1604 for Lake Water