

Study of an acid phosphatase test for the confirmation of *Clostridium perfringens* directly from CHROMagar™ C.perfringens agar medium

CONFIDENTIAL

Laboratory: Laboratoire MICROSEPT

ZA de la Sablonnière 15 rue Denis Papin

49220 LE LION D'ANGERS

FRANCE

For: CHROMagar

4 place du 18 Juin 1940

75006 PARIS FRANCE

This report contains 15 pages, including 4 pages of appendices.

The reproduction of this document is only authorized in its entirety.

Version 2 May 25, 2020

Table of contents

1.	Introd	duction	3
2.	Mate	rials and methods	3
:	2.1. N	Materials	3
	2.1.1.	Devices	3
	2.1.2.	Culture media	3
	2.1.3.	. Reagents	3
:	2.2. N	Methods	4
	2.2.1.	Strain culture protocol	4
	2.2.2.	Confirmation of Clostridium perfringens	6
	2.2.	2.1. General	6
	2.2.	2.2. Acid phosphatase test	6
3.	Resul ⁻	ts	7
3	3.1. R	Raw results	7
;	3.2. C	Comments	10
4.	Interp	oretation and conclusion	10

Appendices

- Appendix A: Raw results for strains of *Clostridium*
- Appendix B: Raw results for strains not belonging to the genus *Clostridium*

1. Introduction

The aim of this study is to evaluate the effectiveness of an acid phosphatase test to differentiate *Clostridium perfringens* from other potentially false positive bacteria in the CHROMagarTM C.perfringens medium.

The ISO 14189:2017 standard, allowing the enumeration of *Clostridium perfringens* in water by membrane filtration, provides an acid phosphatase test for the confirmation of the characteristic colonies.

The study aims at verifying that the replacement of the FAST Blue B salt by the FAST Blue RR salt in the acid phosphatase reagent optimizes the interpretation of the test on CHROMagarTM C.perfringens agar.

2. Materials and methods

2.1. Materials

2.1.1. Devices

The devices used in this study are the ones usually encountered in a laboratory. The culture media were incubated in anaerobic jars containing anaerogenic generators (Anaerogen ThermoScientific, ref: AG0025A) and an anaerobic control (Anaerotest Merck, ref: 15112). The paper used to carry out the acid phosphatase test is white calligraph type blotting paper at a grammage of 100 g/m².

2.1.2. Culture media

The culture media used were as follows:

- Tryptone Sulfite Cycloserine agar (OXOID ref: CM0587)
- CHROMagar™ C.perfringens agar (Base ref: PF652(B) / Supplements ref: PF652(S1) and ref: PF652(S2))
- Trypto caseine Soja Agar (BioMérieux ref : 41466)
- Columbia 5% Sheep Blood Agar (BioMérieux ref: 43041)

2.1.3. Reagents

The acid phosphatase reagent used was as follows:

-	1-Naphthylphosphate monosodium salt (CAS N°81012-89-7)	0,4 g
-	FAST Blue RR salt (4-Benzoylamino-2,5-dimethoxybenzenediazonium	
	chloride hemi (zinc chloride) salt) (CAS N°14726-29-5)	0,8 g

3/15

- Acetate buffer (pH 4,6 \pm 0,2)

20 ml

- Glacial acetic acid (CAS N°64-19-7)
- Sodium acetate (CAS N°127-09-3)
 Acetate buffer has been prepared by dissolving 0,3 ml glacial acid acetic and 0,4 g sodium acetate in deionized water qsp to 1000 ml.

The acid phosphatase reagent was obtained by dissolving the ingredients in the acetate buffer and allow to stand for 60 \pm 5 min at 5 \pm 3 °C to allow precipitation. The solution was passed through a fluted filter to remove the precipitate.

2.2. Methods

2.2.1. Strain culture protocol

During this study, 15 strains of *Clostridium perfringens* from different origins were tested, as well as 7 *Clostridium* spp. exclusive of *Clostridium perfringens* strains. Eighteen strains which may have characteristics close to *Clostridium perfringens* on CHROMagarTM C.perfringens agar were also tested. All of these strains were isolated on TSC agar and on CHROMagarTM C.perfringens agar.

The appearance of the characteristic colonies on these 2 media is as follows:

<u>Figure 1</u>: appearance of the characteristic colonies on TSC agar media and CHROMagarTM C.perfringens agar.

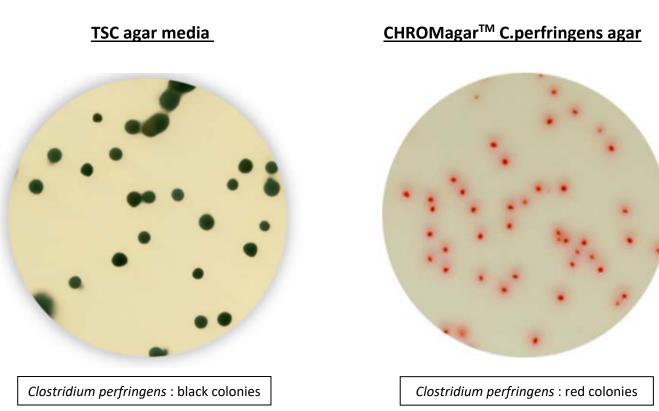


Table 1 shows all the strains used for the tests and their aspect on the selective agar media.

4/15

Table 1: list of the different bacterial strains isolated on TSC agar media and on $CHROMagar^{TM}$ C. perfringens agar.

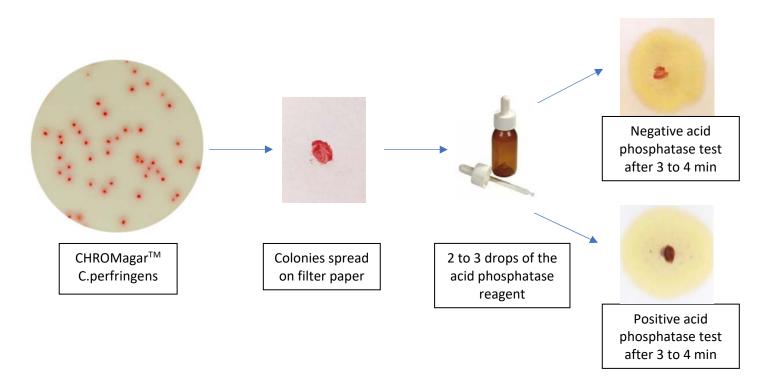
perfringen	5 agai.				
Number	Strain	Origin	TSC	CHROMAGAR	
1	Clostridium perfringens	Tap water	Black colonies	Red colonies	
3	Clostridium perfringens	WDCM00007	Black colonies	Red colonies	
6	Clostridium perfringens	Composite food product	Black colonies	Red colonies	
7	Clostridium perfringens	Spirulina	Black colonies	Red colonies	
8	Clostridium perfringens	Duck meat	Black colonies	Red colonies	
9	Clostridium perfringens	Poultry meat	Black colonies	Red colonies	
10	Clostridium perfringens	Seaweed Dulse	Black colonies	Red colonies	
13	Clostridium perfringens	Sea bean seaweed	Black colonies	Red colonies	
14	Clostridium perfringens	Seaweed Dulse	Black colonies	Red colonies	
15	Clostridium perfringens	Spirulina powder	Black colonies	Red colonies	
16	Clostridium perfringens	Water sewage treatment plant	Black colonies	Red colonies	
17	Clostridium perfringens	Seaweed Laminaria digitata powder	Black colonies	Red colonies	
18	Clostridium perfringens	Water sewage treatment plant	Black colonies	Red colonies	
19	Clostridium perfringens	Pond water	Black colonies	Red colonies	
20	Clostridium perfringens	Seaweed Asco powder	Black colonies	Red colonies	
2	Clostridium butyricum	River water	Black colonies	Red colonies	
4	Clostridium sp. (butyricum or glycolicum)	Outlet water by lagoon treatment	Black colonies	Red colonies	
5	Clostridium glycolicum	Pond water	Black colonies	Red colonies	
11	Clostridium sordelii	Thyme	Black colonies	Red colonies	
12	Clostridium bifermentans	Composite food product	Black colonies	Red colonies	
N	Paeniclostridium sordelii	DSMZ collection	Black colonies	Red colonies	
P	Clostridium septicum	DSMZ collection	White colonies	No growth	
Α	Leuconostoc mesenteroides	Zucchini flan	No growth	Blue colonies	
В	Lactobacillus sakei	Smoked salmon	White colonies	Red colonies	
С	Lactobacillus gasseri	Probiotic	White colonies	Blue colonies	
D	Lactobacillus reuteri	Probiotic	No growth	Red colonies	
E	Bifidobacterium lactis	Probiotic	White colonies	Blue colonies	
F	Lactobacillus paracasei	Dairy product	No growth	No growth	
G	Leuconostoc mesenteroides	Meat product	No growth	Red colonies	
Н	Streptococcus thermophilus	Probiotic	No growth	Red colonies	
ı	Lactobacillus sakei	Dairy product	White colonies	Red colonies	
J	Enterococcus faecalis	Bathing water	White colonies	Red colonies	
К	Enterococcus faecalis	Water sewage treatment plant	White colonies	Red colonies	
L	Enterococcus faecium	Outlet water by lagoon treatment	White colonies	Red colonies	
М	Weissella viridescens	Composite food product	No growth	No growth	
О	Pediococcus pentosaceus	DSMZ collection	No growth	No growth	
Q	Lactobacillus plantarum	DSMZ collection	No growth	Blue colonies	
R	Enterobacter cloacae	Outlet water by lagoon treatment	No growth	No growth	
S	Serratia marescens	Pond water	No growth	No growth	
Т	Citrobacter freundii	Outlet water by lagoon treatment	No growth	No growth	

2.2.2. Confirmation of Clostridium perfringens

2.2.2.1. General

It is recommended, for counts of 1 to 10 colonies, to submit for confirmation all colonies and, for counts greater than 10 colonies, at least 10 colonies randomly chosen.

The ISO 14189:2017 standard indicates that the confirmation of the characteristic colonies on TSC agar must be carried out after subculturing on a blood agar, a Columbia agar or a nutrient-rich agar (for example: Tryptone Soy Agar). These subcultures are then subjected to the acid phosphatase test.


The objective of this study is to determine the effectiveness of the new acid phosphatase reagent directly on the red colonies present on the CHROMagarTM C.perfringens agar.

2.2.2.2. Acid phosphatase test

Colonies grown anaerobically are spread on filter paper and 2 to 3 drops of the acid phosphatase reagent are placed onto the colonies. A purplish colour developed within 3 minutes to 4 minutes is considered as a positive reaction. The replacement of the FAST Blue B salt by the FAST Blue RR salt, gives a yellow color to the reagent and allows an easier reading contrast of the positive colonies.

Clostridium perfringens produces black colonies on TSC agar, red colonies on CHROMagar[™] C.perfringens agar and has an acid phosphatase activity.

Figure 2: principle of the acid phosphatase test

3. Results

3.1. Raw results

All the strains of *Clostridium* for which growth has been observed on CHROMagar[™] C.perfringens agar (red colonies or blue colonies) were tested with the acid phosphatase reagent. In parallel, an isolation on a Columbia agar as provided for in the standard ISO 14189:2017 was carried out. An acid phosphatase test (as in ISO 14189:2017 but with FAST Blue RR salt) was then carried out on the colonies present on the Columbia agar. The different results are presented in table 2.

The strains not belonging to the genus *Clostridium* but which may have similar growth characteristics, were isolated on CHROMagarTM C.perfringens agar and tested by the acid phosphatase reagent. In parallel, an isolation on TSA agar was carried out. The results are presented in table 3 and in appendices A and B.

Table 2: results of the acid phosphatase tests on *Clostridium* strains

				CHF	ROMAGAR	Final results	COL	UMBIA	
Number	Strain	Origin	TSC	Aspect	Phosphatase result	(CHROMAGAR and phosphatase)	Aspect	Phosphatase	Result
1	Clostridium perfringens	Tap water	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
3	Clostridium perfringens	WDCM00007	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
6	Clostridium perfringens	Composite food product	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
7	Clostridium perfringens	Spirulina	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
8	Clostridium perfringens	Duck meat	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
9	Clostridium perfringens	Poultry meat	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
10	Clostridium perfringens	Seaweed Dulse	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
13	Clostridium perfringens	Sea bean seaweed	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
14	Clostridium perfringens	Seaweed Dulse	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
15	Clostridium perfringens	Spirulina powder	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
16	Clostridium perfringens	Water sewage treatment plant	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
17	Clostridium perfringens	Seaweed Laminaria digitata powder	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
18	Clostridium perfringens	Water sewage treatment plant	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
19	Clostridium perfringens	Pond water	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
20	Clostridium perfringens	Seaweed Asco powder	Black colonies	Red colonies	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
2	Clostridium butyricum	River water	Black colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
4	Clostridium sp. (butyricum ou glycolicum)	Outlet water by lagoon treatment	Black colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
5	Clostridium glycolicum	Pond water	Black colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
11	Clostridium sordelii	Thyme	Black colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
12	Clostridium bifermentans	Composite food product	Black colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
N	Paeniclostridium sordelii	DSMZ collection	Black colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
Р	Clostridium septicum	DSMZ collection	White colonies	No growth	Ø	No Clostridium perfringens	White colonies	Positive	Possible Clostridium perfringens

Table 3: results of the acid phosphatase tests on strains not belonging to the genus *Clostridium*.

Niconala	Church	Outoin	TCC	CHRC	MAGAR	Final result (CHROMAGAR		TSA
Number	Strain	Origin	TSC	Aspect	Phosphatase	and phosphatase)	Aspect	Phosphatase
Α	Leuconostoc mesenteroides	Zucchini flan	No growth	Blue colonies	Negative	No Clostridium perfringens	White colonies	Negative
В	Lactobacillus sakei	Smoked salmon	No growth	Red colonies	Positive	Possible <i>Clostridium perfringens</i>	White colonies	Positive
С	Lactobacillus gasseri	Probiotic	No growth	Blue colonies	Negative	No Clostridium perfringens	White colonies	Negative
D	Lactobacillus reuteri	Probiotic	No growth	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative
E	Bifidobacterium lactis	Probiotic	No growth	Blue colonies	Negative	No Clostridium perfringens	White colonies	Negative
F	Lactobacillus paracasei	Dairy product	No growth	No growth	Ø	No Clostridium perfringens	White colonies	Positive (very weak)
G	Leuconostoc mesenteroides	Meat product	No growth	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative
н	Streptococcus thermophilus	Probiotic	No growth	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative
I	Lactobacillus sakei	Dairy product	No growth	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative
J	Enterococcus faecalis	Bathing water	White colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative
K	Enterococcus faecalis	Water sewage treatment plant	White colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative
L	Enterococcus faecium	Outlet water by lagoon treatment	White colonies	Red colonies	Negative	No Clostridium perfringens	White colonies	Negative
M	Weissella viridescens	Composite food product	No growth	No growth	Ø	No Clostridium perfringens	White colonies	Negative
0	Pediococcus pentosaceus	DSMZ collection	No growth	No growth	Ø	No Clostridium perfringens	White colonies	Negative
Q	Lactobacillus plantarum	DSMZ collection	No growth	Blue colonies	Negative	No Clostridium perfringens	White colonies	Negative
R	Enterobacter cloacae	Outlet water by lagoon treatment	White colonies	No growth	Ø	No Clostridium perfringens	White colonies	Negative
S	Serratia marescens	Pond water	No growth	No growth	Ø	No Clostridium perfringens	White colonies	Positive
Т	Citrobacter freundii	Outlet water by lagoon treatment	No growth	No growth	Ø	No Clostridium perfringens	White colonies	Positive

9/15

3.2. Comments

22 strains belonging to the genus *Clostridium* and 18 other strains of different genera were tested during this study. 21 strains out of the 22 *Clostridium* strains developed characteristic red colonies on CHROMagarTM C.perfringens agar medium and 15 of these strains gave a positive reaction to the modified acid phosphatase test, both from CHROMagarTM C.perfringens agar and COLUMBIA agar. All the strains of *Clostridium* spp. exclusive of *Clostridium perfringens*, gave a negative result with the acid phosphatase test.

Among the 18 strains of bacteria not belonging to the genus *Clostridium*, 8 of them gave characteristic colonies on the CHROMagarTM C.perfringens agar medium:

- Strain B: Lactobacillus sakei
- Strain D: Lactobacillus reuteri
- Strain G: Leuconostoc mesenteroïdes
- Strain H: Streptococcus thermophilus
- Strain I: Lactobacillus sakei
- Strain J: Enterococcus faecalis
- Strain K: Enterococcus faecalis
- Strain L: Enterococcus faecium

For all these strains except for *Lactobacillus sakei* (B), the acid phosphatase test was negative. A second strain of *Lactobacillus sakei* (I) from a different origin has been tested and gave a negative result.

4. Interpretation and conclusion

The present study involved 40 strains analyzed with the CHROMagarTM C.perfringens agar media and confirmed with the modified acid phosphatase test. No difference was observed between the confirmation results by the modified acid phosphatase test carried out directly from the CHROMagarTM C.perfringens agar or after purification on Columbia or TSA. A single strain of *Lactobacillus sakei* gave a false positive result, another strain of *Lactobacillus sakei* having given a negative result on both CHROMagarTM C.perfringens and Columbia agar media.

Particular attention must be paid when reading the acid phosphatase test when it is carried out directly from the red colonies on CHROMagarTM C.perfringens agar. Indeed, the appearance of a purple coloration for a positive sample is obtained after 3 to 4 minutes and a training or a warning specific to the operator must be specified to avoid the false positive results of a red colony.

In conclusion, it appears that the replacement of the FAST Blue B salt by the FAST Blue RR salt has no impact on the results obtained with the CHROMagarTM C.perfringens agar media and that the reading contrast is satisfactory for the detection of *Clostridium perfringens*.

This conclusion is only valid in the operating conditions of the study and with the bacterial strains tested.

Le Lion d'Angers, May 25, 2020 Guillaume MESNARD, Deputy Manager

APPENDICES

Raw results of study

	Strain				CHROMAGAR		Final result (CHROMAGAR and	COLU	MBIA	
Number	(identified by MALDI-TOF)	Origin	TSC	Aspect	Phosphatase	Phosphatase result	phosphatase)	Aspect	Phosphatase	Result
1	Clostridium perfringens	Tap water	Black colonies	Red colonies		Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
3	Clostridium perfringens	WDCM00007	Black colonies	Red colonies	• 3	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
6	Clostridium perfringens	Composite food product	Black colonies	Red colonies	6	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
7	Clostridium perfringens	Spirulina	Black colonies	Red colonies	- 7	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
8	Clostridium perfringens	Duck meat	Black colonies	Red colonies	8	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
9	Clostridium perfringens	Poultry meat	Black colonies	Red colonies	(3)	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
10	Clostridium perfringens	Seaweed Dulse	Black colonies	Red colonies	10	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
13	Clostridium perfringens	Sea bean seaweed	Black colonies	Red colonies	3	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
14	Clostridium perfringens	Seaweed Dulse	Black colonies	Red colonies	6	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
15	Clostridium perfringens	Spirulina powder	Black colonies	Red colonies	6	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
16	Clostridium perfringens	Water sewage treatment plant	Black colonies	Red colonies	(ac)	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
17	Clostridium perfringens	Seaweed Laminaria digitata powder	Black colonies	Red colonies	©	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
18	Clostridium perfringens	Water sewage treatment plant	Black colonies	Red colonies	Ø AB	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
19	Clostridium perfringens	Pond water	Black colonies	Red colonies	6	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens

APPENDIX A: Raw results for strains of Clostridium

	Strain				CHROMAGA	.R	Final result (CHROMAGAR and	COLU	MBIA	
Number	(identified by MALDI-TOF)	Origin	TSC	Aspect	Phosphatase	Phosphatase result	phosphatase)	Aspect	Phosphatase	Result
20	Clostridium perfringens	Seaweed Asco powder	Black colonies	Red colonies	3 (20)	Positive	Clostridium perfringens	White colonies	Positive	Clostridium perfringens
2	Clostridium butyricum	River water	Black colonies	Red colonies	· ·	Negative	Not Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
4	Clostridium sp. (butyricum or glycolicum)	Outlet water by lagoon treatment	Black colonies	Red colonies		Negative	Not Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
5	Clostridium glycolicum	Pond water	Black colonies	Red colonies	5	Negative	Not Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
11	Clostridium sordelii	Thyme	Black colonies	Red colonies	M	Negative	Not Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
12	Clostridium bifermentans	Composite food product	Black colonies	Red colonies	(a)	Negative	Not Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
N	Paeniclostridium sordelii	DSMZ collection	Black colonies	Red colonies	2	Negative	Not Clostridium perfringens	White colonies	Negative	Not Clostridium perfringens
P	Clostridium septicum	DSMZ collection	White colonies	No growth	Ø	Ø	Not Clostridium perfringens	White colonies	Positive	Possible <i>Clostridium</i> perfringens

	Strain				CHROMAGAR		Final result (CHROMAGAR and		TSA	
Number	(identified by MALDI-TOF)	Origin	TSC	Aspect	Phosphatase	Phosphatase result	phosphatase)	Aspect	Phosphatase	Phosphatase result
A	Leuconostoc mesenteroides	Zucchini flan	No growth	Blue colonies	Acmoonical	Negative	Not Clostridium perfringens	White colonies	*	Negative
В	Lactobacillus sakei	Smoked salmon	No growth	Red colonies	•	Positive	Possible Clostridium perfringens	White colonies	В	Positive
С	Lactobacillus gasseri	Probiotic	No growth	Blue colonies	© (CHEOWEAR)	Negative	Not Clostridium perfringens	White colonies	0	Negative
D	Lactobacillus reuteri	Probiotic	No growth	Red colonies	D	Negative	Not Clostridium perfringens	White colonies	D D	Negative
E	Bifidobacterium lactis	Probiotic	No growth	Blue colonies	E (CHECHAGAR)	Negative	Not Clostridium perfringens	White colonies	6	Negative
F	Lactobacillus paracasei	Dairy product	No growth	No growth	Ø	Ø	Not Clostridium perfringens	White colonies	Lacts @	Positive (very weak)
G	Leuconostoc mesenteroides	Meat product	No growth	Red colonies	(Chromacae)	Negative	Not Clostridium perfringens	White colonies	90	Negative
Н	Streptococcus thermophilus	Probiotic	No growth	Red colonies	H	Negative	Not Clostridium perfringens	White colonies	H	Negative
ı	Lactobacillus sakei	Dairy product	No growth	Red colonies	(CHROWENE)	Negative	Not Clostridium perfringens	White colonies	3 =	Negative (weak coloration after 4 min)
J	Enterococcus faecalis	Bathing water	White colonies	Red colonies	(Cheomagne)	Negative	Not Clostridium perfringens	White colonies	7	Negative (weak coloration after 4 min)
К	Enterococcus faecalis	Water sewage treatment plant	White colonies	Red colonies	(k	Negative	Not Clostridium perfringens	White colonies	K	Negative
L	Enterococcus faecium	Outlet water by lagoon treatment	White colonies	Red colonies		Negative	Not Clostridium perfringens	White colonies		Negative
М	Weissella viridescens	Composite food product	No growth	No growth	Ø	Ø	Not Clostridium perfringens	White colonies	O _M	Negative
o	Pediococcus pentosaceus	DSMZ collection	No growth	No growth	Ø	Ø	Not Clostridium perfringens	White colonies	0	Negative

APPENDIX B: Raw results for strains other than Clostridium

	Strain	Origin		CHROMAGAR			Final result (CHROMAGAR and		TSA	
Number	(identified by MALDI-TOF)		TSC	Aspect	Phosphatase	Phosphatase result	phosphatase)	Aspect	Phosphatase	Phosphatase result
Q	Lactobacillus plantarum	DSMZ collection	No growth	Blue colonies	Q (CHEOMAGAR)	Negative	Not Clostridium perfringens	White colonies	a a	Negative
R	Enterobacter cloacae	Outlet water by lagoon treatment	White colonies	No growth	Ø	Ø	Not Clostridium perfringens	White colonies	T2×507 R	Negative
S	Serratia marescens	Pond water	No growth	No growth	Ø	Ø	Not Clostridium perfringens	White colonies	AQFAZY 6	Positive
Т	Citrobacter freundii	Outlet water by lagoon treatment	No growth	No growth	Ø	Ø	Not Clostridium perfringens	White colonies	· t	Positive