The Widest Range of Chromogenic Media
For Colourful Microbial Detection

CHROMagar™
The Chromogenic Media Pioneer
The first chromogenic culture medium (for detection of *E. coli*) was invented and patented by Dr. A. Rambach in 1979. The introduction of this medium triggered a revolution in microbial diagnosis driven by the introduction of a whole range of media for the detection of key clinical & food borne pathogens.

The use of chromogenic culture media for the detection of bacteria is increasing steadily despite the introduction of other (often molecular biology based) techniques.

What is chromogenic technology applied to culture media?

It is colouring the developing bacterial colonies with distinctive colours in order to allow an easier differentiation of the growing micro-organism. Dr. A. Rambach developed and patented the use, in microbiology, of a technology based on a soluble colourless molecule (called chromogen) which was composed of a substrate, targeting a specific enzymatic activity and a chromophore.

When the colourless chromogenic conjugate is cleaved by an enzyme of the target organism, the chromophore is released, and, in its unconjugated form the chromogen exhibits its distinctive colour and, due to reduced solubility forms a precipitate. The result is a very specific & distinctive colour based differentiation, which is clearly distinguishable to the naked eye under normal lighting conditions.

CHROMagar™ Packaging Sizes

The unit size of our packs is the **Liter**: quantity sufficient to prepare “X” L of media

Standard pack sizes are:

<table>
<thead>
<tr>
<th>PACK SIZE</th>
<th>PACK CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 L</td>
<td>around 250 plates</td>
</tr>
<tr>
<td>25 L</td>
<td>around 1250 plates</td>
</tr>
</tbody>
</table>

Σ stands for "quantity sufficient to prepare"
For isolation and differentiation of major clinical-significant Candida species

99 % Sensitivity/Specificity

Yeast are increasingly important pathogens, particularly for immune-depressed people such as the elderly, AIDS victims, etc. CHROMagar™ Candida will not only allow the growth and detection of yeasts (like traditional Sabouraud Agar) but will also instantly allow you to differentiate various Candida species solely by the colour of the colony. CHROMagar™ Candida gives a powerful and easy detection of mixed yeast cultures and in some cases antifungal resistant strains present in the samples may appear even as a minor population.

For isolation and differentiation of urinary tract pathogens

99.3 % Sensitivity for E. coli

The major target of this medium is the detection of urinary tract pathogens with E. coli as red colonies, Klebsiella as metallic blue colonies, P. mirabilis as clear with brown halo colonies, etc.

However, CHROMagar™ Orientation has a broader application as a general nutrient agar for the isolation of various microorganisms. For instance, CHROMagar™ Orientation can be used to differentiate various microorganisms in other infected areas; e.g. scars. CHROMagar™ Orientation is useful when supplemented with various antibiotics in detecting increasingly important nosocomial and multiple resistant microorganisms

For detection and isolation of Salmonella

Sensitivity: 100 %

Specificity: 89 % compared to 78 % with Hektoen Agar

Conventional media for the detection of Salmonella by H2S character have very poor specificity resulting in numerous false positives (Citrobacter, Proteus, etc.) among the rare, real positive Salmonella. The workload for unnecessary examination of suspect colonies is so heavy that real positive Salmonella colonies might often be overlooked in routine testing. Because of their poor specificity, conventional media require a tedious examination of at least 10 colonies per suspected sample. On the contrary, CHROMagar™ Salmonella eliminates most of those false positives and allows technicians to focus on the real contaminated samples.

For isolation and differentiation of Streptococcus agalactiae (GBS)

Sensitivity: 92 %

Predictivity: 95 %

Group B Streptococcus (GBS) has been associated with severe neonatal infections such as septicemia and meningitis. The detection of vaginal colonisation by GBS in pregnant women is the most effective strategy to prevent neonatal infections.

LIM RambaQUICK™ StrepB Method is a powerful screening tool, which combines a selective enrichment broth with a highly specific and sensitive medium, allowing detection of GBS (haemolytic as well as non-haemolytic) while inhibiting the Enterococci.

(4) Poisson et al, JMM 84 (2011) 490-491
For isolation and direct differentiation of *Clostridium difficile*

Malassezia is a fungus naturally found on the animals and humans skin. On normal healthy skin it does not cause infections, but when the environment of the skin is altered, Malassezia species are able to cause several cutaneous diseases as severe dermatitis or otitis. Since members of the genus *Malassezia* share similar morphological and biochemical characteristics, the use of traditional culture media for differentiating them based on phenotypic features is not suitable.

CHROMagar™ *Malassezia* was developed with the goal of facilitating not only their detection, but also to improve an algorithm for the differentiation of the most common species.\\(^{5}\)

Plate Reading
- Malassezia furfur
 → Large, pale pink and wrinkled
- Other *Malassezia* spp. including *M. globosa* & *M. restricta*
 → Mostly pink to purple

Product code
MZ282: 5 L pack
MZ283-25: 25 L pack

For detection of *Malassezia* spp.

Plate Reading
- *C. difficile*
 → Colourless and fluorescent under UV light at 365 nm
- Other bacteria
 → Colourless, non fluorescent or inhibited

Product code
CD122: 5 L pack

Warning

Malassezia may form colonies that are larger than 3 mm in diameter. Enrichment of the inoculum may be required to enhance the detection of *Malassezia* spp.

Product code
MZ282: 5 L pack
MZ283-25: 25 L pack

For isolation and direct differentiation of methicillin resistant *Staphylococcus aureus* (MRSA)* including low level MRSA*

100 % Sensitivity/Specificity\\(^{5}\)

CHROMagar™ introduced a revolution in this field in 2002, with the first chromogenic medium for the detection of methicillin resistant *Staphylococcus aureus*: CHROMagar™ MRSA. This medium led to such significant reductions in both the response time and laboratory workload, that it allowed an absolutely necessary wide-scale patient screening.

Plate Reading
- Methicillin resistant *Staphylococcus aureus* (MRSA)
 → Rose to mauve
- Methicillin susceptible *Staphylococcus aureus*
 → Inhibited
- Other bacteria
 → Blue, colourless or inhibited

Product code
MR502: 5 L pack

For isolation and direct differentiation of methicillin resistant *Staphylococcus aureus* (MRSA)* including low level MRSA*

95.4 % Sensitivity\\(^{6}\)

Clostridium difficile is the leading cause of nosocomial infectious diarrhea in adults, mostly in patients who have both medical care and antibiotic treatment.

Although PCR has become the leading *C. difficile* detection technique, culture is essential for strain typing and antimicrobial susceptibility testing. CHROMagar™ *C. difficile* is a new fluorogenic culture medium, extremely sensitive and selective, especially designed to simplify and speed up (24 h) the culture of *C. difficile*.

Plate Reading
- CPE *E. coli*
 → Dark pink to reddish
- CPE coliforms
 → Metallic blue
- Other Gram negative CPE
 → Colourless
- Other Gram negative non-CPE
 → Blue, colourless or inhibited

Product code
SC172: 5 L pack
SC173-25: 25 L pack

\(^{6}\) Gaillot et al. Poster 2053 ASM 2014
Clinical Microbiology

For detection of Van A/Van B VRE. *faecalis* & VRE. *faecium*
95.5 % Sensitivity/90.4 % Specificity (8)
Acquired vancomycin resistance in *E. faecalis* and *E. faecium* has the potential to be transmitted to aggressive pathogens. Their spread can be avoided by laboratory’s ability to rapidly detect VRE and implementation of efficient control measures.
The use of CHROMagar™ VRE media allows vancomycin resistant *E. faecalis* and *E. faecium* to be easily detected by colony colour after only 24 hours of incubation.

For detection of Acinetobacter*
94.7 % Sensitivity/91.6 % Specificity (9)
Acinetobacter is an organism with high capacity for survival on environmental surfaces. Its ability to acquire antimicrobial resistance is a cause of increased concern for nosocomial infections. In hospitals, *Acinetobacter baumannii*, for instance, can penetrate the body through open wounds, catheters, and breathing tubes.
Any effective infection control policy should include a faecal surveillance. CHROMagar™ Acinetobacter is a tool specifically designed to facilitate this step, by allowing its growth in an intense red colony colour.

For detection of colistin resistant Gram negative bacteria
CHROMagar™ COL-APSE is a sensitive and specific medium for the growth of colistin resistant bacterial pathogens with a lower limit of detection of 10 CFU/mL. This new chromogenic medium may be useful as a primary isolation medium in the surveillance and recovery of colistin resistant bacteria from complex human, veterinary and environmental samples especially those with plasmid mediated MCR-1 or novel mechanisms of polymyxin resistance. (10)

CHROMagar™ Y. enterocolitica

For detection and direct differentiation of pathogenic Yersinia enterocolitica*

Sensitivity: 100 %/Specificity: 99 %

Among the Yersinia genus, Yersinia enterocolitica is one of the most common food borne pathogens. Traditional culture media, like the CIN agar allow for the growth of both pathogenic and non-pathogenic biotypes with the same aspect, resulting in an important workload on irrelevant isolates (false positives). With CHROMagar™ Y. enterocolitica, the pathogenic strains are immediately differentiated from other bacteria by a distinctive colony colour. The laboratory will then concentrate its efforts and resources only on suspect colonies that have a real potential of pathogenicity.

Gaillot et al. JCM 2012

Plate Reading
- Pathogenic Y. enterocolitica → Mauve
- Non pathogenic Y. enterocolitica and other bacteria → Inhibited or limited growth or metallic blue colour

Product code YE492: 5 L pack

CHROMagar™ Staph aureus

For isolation and direct differentiation of Staphylococcus aureus

95.5 % Sensitivity/99.4 % Specificity

Staphylococcus aureus is a major pathogenic bacterium found in the clinical field and in food industry. Nosocomial infections due to S. aureus create an increasing number of problems, so it is essential to accurately and rapidly detect S. aureus. Mannitol fermentation based traditional media lead to many false positives and false negatives. CHROMagar™ Staph aureus has unrivalled sensitivity and specificity for detecting S. aureus after 24 hours. This obviates the need for many useless catalase and latex agglutination tests on non-S. aureus strains.

Plate Reading
- Staphylococcus aureus → Pink to mauve
- Other Enterobacteriaceae → Colourless, blue or inhibited

Product code TA672: 5 L pack

CHROMagar™ STEC

For detection of Shiga-Toxin producing E. coli (STEC)*

89.1 % Sensitivity/91.4 % Specificity

An increasing and worrisome number of studies show that, non-O157 Shiga-Toxin producing E. coli (STEC) have been significantly responsible for foodborne poisoning outbreaks. In many cases, laboratories have limited their search for pathogenic E. coli to the common O157 serotype, due to the fact that there were no available selective culture media for non-O157 E. coli. CHROMagar™ STEC is designed to fill this gap: detection, as mauve colonies, of not only the classical STEC O157, but also many other serotypes. It is an excellent tool for a large number of samples screening procedures.

Malika Gouali, François-Xavier Weill et al JCM 2012

Plate Reading
- Most common Shiga-Toxin E. coli serotypes → Mauve
- Other Enterobacteriaceae → Colourless, blue or inhibited

Product code ST162: 5 L pack

CHROMagar™ Campylobacter

For the detection, differentiation and enumeration of thermotolerant Campylobacter

Campylobacter is a major cause of foodborne diarrheal diseases in humans and the most common bacterial cause of gastroenteritis around the world. With CHROMagar™ Campylobacter, the detection of thermotolerant Campylobacter in red on a translucent agar facilitates the reading compared to traditional charcoal based agar where numeration is difficult. Other microorganisms will be inhibited, or grow in blue colonies for clear differentiation.

Product code CP572: 5 L pack

For more information about our products, please refer to our website/Technical Documents.

For US Customers: products marked with a ** are for Research Use Only in the USA according to FDA regulations.
Food Industry

CHROMagar™ O157

Plate Reading
- *E. coli* O157
 - Mauve
- Other bacteria
 - Steel blue, colourless or inhibited

Product code
- EE222: 5 L pack
- EE223-25: 25 L pack

For the selective isolation and differentiation of *E. coli* O157 in food/clinical samples

- **98% Sensitivity for *E. coli* O157**

 The conventional medium for detection of *E. coli* O157, Sorbitol Mac Conkey Agar, has a poor specificity therefore creating a lot of false positives (*Proteus, E. hermanii*, etc.). Sorbitol Mac Conkey Agar is also difficult to read since the pathogen gives colourless colonies among red colonies.

 CHROMagar™ O157 is a chromogenic medium with easier detection of *E. coli* O157 as mauve colonies among blue and colourless colonies. Selectivity can be increased by adding potassium tellurite to our medium.

For detection and isolation of *Salmonella* spp. in clinical and food samples

- **92.7% Sensitivity**

 Traditional media for detection of *Salmonella* had a very poor specificity. The workload of unnecessary examinations of suspect colonies was so high that real positive *Salmonella* colonies were often missed in routine testing.

 Rambach™ Agar eliminates most false positives.

 Since Rambach™ Agar has a very high specificity: (1) fewer samples are positive and have to be checked and (2) there is no more need to investigate 10 different suspect colonies per sample.

For detection and isolation of *Salmonella* species including lactose positive *Salmonella* in food specimens

- **99% Sensitivity**

 The ISO 6579 for *Salmonella* testing is a direct result of the growing incidence of lactose positive *Salmonella* spp. isolated from cases of food poisoning. CHROMagar™ Salmonella Plus has been developed to meet the requirements of ISO 6579 and provides clear, easily visible identification of *Salmonella* spp., including: lactose positive *Salmonella*, *S. typhi* and *S. paratyphi*.

For detection, differentiation, enumeration and confirmation of *Listeria monocytogenes* from other bacteria in food samples

- **100% Sensitivity**

 Listeria monocytogenes is a pathogenic bacterium which can cause serious food poisoning. Since *L. monocytogenes* and *L. innocua* have similar biochemical properties, they cannot be differentiated on traditional media (Palcam, Oxford).

 On CHROMagar™ Listeria, *L. monocytogenes* colonies have a specific blue colour surrounded by a white opaque halo.

 The CHROMagar™ Listeria method allows detection of negative samples in only 2 days. This method requires only a single half Fraser enrichment step and confirmation of positive samples can be performed by picking a suspect colony directly from CHROMagar™ Listeria and transferring it to CHROMagar™ Identification Listeria giving a result the next day.

- Validation study, Coignard M. 2005
Food Industry

For detection and enumeration of Bacillus cereus group

100% Sensitivity/100% Specificity

Bacillus cereus food poisoning is frequently associated with ready-to-eat products. The bacterium has been isolated from dried beans and cereals, and from dried foods such as spices, seasoning mixes and potatoes.

On CHROMagar™ B.cereus, the intense blue coloured colonies surrounded by a halo on a translucent agar facilitates the reading compared to traditional Mannitol based agar which displays red colonies on pink agar.

19 Adria Normandie Study 2012

For isolation and direct differentiation of Clostridium perfringens

Clostridium perfringens is involved in food poisoning and animals infections. CHROMagar™ C.perfringens allows the detection and enumeration of Clostridium perfringens in food and water samples. Specific and selective, this medium detects the Clostridium perfringens colonies by an orange coloration. The other microorganisms are blue, metallic blue or inhibited.

CHROMagar™ C.perfringens can be used with pouring or surface methods, offering the latter a better performance than traditional media like TSC.

For isolation and detection of V. parahaemolyticus, V. vulnificus and V. cholerae

95% Specificity

V. parahaemolyticus, V. vulnificus and V. cholerae are pathogenic bacteria which can cause serious seafood poisoning. For the detection of those bacteria, traditional methods (TCBS) are long, require heavy workload and are not very sensitive.

On CHROMagar™ Vibrio medium helps to easily differentiate V. parahaemolyticus, V. vulnificus and V. cholerae, from other Vibrio directly at the isolation step by colony colour with a higher sensitivity than conventional methods.

18 Angela Di Pinto Università degli Studi di Bari Aldo Moro, Italy

For detection and enumeration of Enterobacteriaceae

The Enterobacteriaceae and coliform bacteria within this family represent two of the most common groups of indicator organism used by the food industry. In some countries, depending on regulatory requirements, the food industry has moved towards testing for Enterobacteriaceae.

CHROMagar™ Enterobacteria allows the detection and differentiation by the color of E. coli and other Enterobacteriaceae.

For isolation and enumeration of Mastitis infections

Mastitis causes a reduction in the quantity and quality of milk output, increased veterinary expenses due to excessive use of medications, increased risk of residues in the milk or meat and, consequently, the possibility of damage public health.

CHROMagar™ Mastitis is a new commercially available tool for the rapid and simple differentiation of the main bacteria involved in Mastitis infections. It is supplied as a kit with two different media, one for the Gram positive bacteria, and the other for the Gram negative bacteria.
Food Industry

CHROMagar™ Staphylococcus

For detection and isolation of *Staphylococcus* spp.

Staphylococci are highly successful at colonizing a variety of environments. They show a remarkable survival persistence even following heavy disinfectant protocols, contributing to their dissemination and challenging eradication.

CHROMagar™ Staphylococcus is a unique chromogenic medium allowing for the detection and differentiation by the colour of the various *Staphyloccoci* species, from environmental samples.

Plate Reading:
- *S. aureus* → Mauve
- Other *Staphylococcus* → Blue to colourless
- Other bacteria → Inhibited

Product code
- CQ382: 5 L pack

CHROMagar™ Streptococcus

For detection and isolation of *Streptococcus* spp.

In the Mastitis management of milking cow herds it is important to rapidly detect the presence of *Streptococci* and differentiate between environmental *Streps* (*S. uberis, S. dysgalactiae*) from contagious pathogens like *S. agalactiae* and *Enterococci* from faecal origin.

CHROMagar™ Streptococcus is a useful tool to analyse the *Streptococci* flora in Mastitis investigations.

Plate Reading:
- *Streptococcus* → Blue
- *Enterococcus* → Mauve
- Other bacteria → Colourless or inhibited

Product code
- CQ392: 5 L pack

CHROMagar™ Cronobacter

For detection of *Cronobacter* spp.

Plate Reading:
- *Cronobacter* spp. → Green to blue
- Other Gram negative → Colourless, clear green, black or yellow
- Gram positive bacteria → Inhibited

Product code
- MC122: 5 L pack

CHROMagar™ TBX

For the detection and enumeration of β-glucuronidase positive *E. coli* in food and animal feeding stuffs

Plate Reading:
- *E. coli* → Blue
- *E. aerogenes* → Colourless
- *E. faecalis* → Inhibited

Product code
- TX182: 5 L pack

CHROMagar™ CCA

For detection and enumeration of *E. coli* and other coliforms in water samples

Plate Reading:
- *E. coli* → Metallic blue to violet
- Other coliforms → Pink to red
- Other bacteria → Colourless, inhibited

Product code
- EF342: 5 L pack

CHROMagar™ AOLA

For detection, enumeration and isolation of *Listeria monocytogenes* and *Listeria* spp.

Plate Reading:
- *L. monocytogenes* → Blue with halo
- *L. innocua* → Blue without halo
- *E. faecalis* → Inhibited
- *E. coli* → Inhibited

Product code
- under request
E. coli is a fecal contamination indicator. The general food standard limits are approximately 50 E. coli bacteria per gram, therefore, it is important to detect and enumerate them accurately. Traditional methods for detecting E. coli are extremely tedious and usually require heavy workload with tests of many suspect colonies.

For detection and enumeration of E. coli in food and water samples

CHROMagar™ E.coli

- **Product code**: EC168: 5 L pack
- **EC169-25**: 25 L pack

Plate Reading
- **E. coli** → Blue
- **Other Gram negative bacteria** → Colourless
- **Gram positive bacteria** → Inhibited

For the simultaneous detection and enumeration of E. coli and other coliforms in food or water samples

CHROMagar™ ECC

- **Product code**: EF322: 5 L pack
- **EF323-25**: 25 L pack

Plate Reading
- **E. coli** → Blue
- **Other coliforms** → Mauve
- **Other bacteria** → Colourless or inhibited

For the simultaneous detection and enumeration of E. coli and other coliforms in food or water samples

This is an innovative chromogenic culture medium to be used in broth form (without agar) within the water filtration technique, to impregnate the pad. You can take an aliquot to prepare the exact quantity of broth you desire. Thanks to this flexibility, you get rid of prepared media stock and shelf life management headaches, and are ensured of always working with fresh media.

AquaCHROM™ ECC

- **Product code**: AQ056: 100 x 100 mL pack

Presence/Absence of E. coli and coliforms in water samples

Liquid Technique

AquaCHROM™ ECC is a non-agar based medium designed to detect the presence of E. coli and other coliforms in 100 mL water samples. Its advantage, compared to other similar commercially available tests, resides in the fact that there is no need of ultra-violet lamp to confirm the presence of E. coli in the sample. The novel formulation of AquaCHROM™ ECC uses two different chromogens (instead of the traditional chromogen/fluorogen combination) which enables test results to be read under normal lighting conditions. Samples develop a yellow colouration when coliforms are present and a green colouration when E. coli is present.

For isolation and detection of Pseudomonas species

P. aeruginosa is a valid indicator for recreational water disinfection efficacy. This parameter is currently used as a criterion in the regulation of wading and swimming pools. Moreover, P. aeruginosa is important not only in terms of its role as an indicator, but also because it is an opportunistic pathogen whose transmission is often associated with water.

CHROMagar™ Pseudomonas

- **Product code**: PS832: 5 L pack

Plate Reading
- **Pseudomonas including P. aeruginosa** → Blue green
- **Other Gram negative** → Mauve to violet, or inhibited
- **Gram positive bacteria** → Mostly inhibited

For isolation and detection of Pseudomonas species

P. aeruginosa is a valid indicator for recreational water disinfection efficacy. This parameter is currently used as a criterion in the regulation of wading and swimming pools. Moreover, P. aeruginosa is important not only in terms of its role as an indicator, but also because it is an opportunistic pathogen whose transmission is often associated with water. CHROMagar™ Pseudomonas delivers rapid and clear results for detection of Pseudomonas by virtue of markedly different colony colouring.
What is chromogenic technology applied to culture media?

It is colouring the developing bacterial colonies with distinctive colours in order to allow an easier differentiation of the growing micro-organism. Dr A. Rambach developed and patented the use, in microbiology, of a technology based on a soluble colourless molecule (called chromogen) which was composed of a substrate, targeting a specific enzymatic activity and a chromophore.

When the colourless chromogenic conjugate is cleaved by an enzyme of the target organism, the chromophore is released, and, in its unconjugated form the chromogen exhibits its distinctive colour and, due to reduced solubility forms a precipitate. The result is a very specific & distinctive colour based differentiation, which is clearly distinguishable to the naked eye under normal lighting conditions.

CHROMagar™ Products by sample

<table>
<thead>
<tr>
<th>CLINICAL</th>
<th>ENVIRONMENTAL</th>
<th>VETERINARY</th>
<th>FOOD & WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>CSF</td>
<td>Nasal</td>
<td>Rectal</td>
</tr>
<tr>
<td>CSF</td>
<td>Nasal</td>
<td>Rectal</td>
<td>Stool</td>
</tr>
<tr>
<td>Nasal</td>
<td>Rectal</td>
<td>Stool</td>
<td>Skin</td>
</tr>
<tr>
<td>Rectal</td>
<td>Stool</td>
<td>Skin</td>
<td>Sputum</td>
</tr>
<tr>
<td>Stool</td>
<td>Skin</td>
<td>Sputum</td>
<td>Throat</td>
</tr>
<tr>
<td>Skin</td>
<td>Sputum</td>
<td>Throat</td>
<td>Nasal specimen</td>
</tr>
<tr>
<td>Sputum</td>
<td>Throat</td>
<td>Nasal specimen</td>
<td>Wounds</td>
</tr>
<tr>
<td>Throat</td>
<td>Nasal specimen</td>
<td>Wounds</td>
<td>Air</td>
</tr>
<tr>
<td>Nasal specimen</td>
<td>Wounds</td>
<td>Air</td>
<td>Clinical Material</td>
</tr>
<tr>
<td>Wounds</td>
<td>Air</td>
<td>Clinical Material</td>
<td>Processed water</td>
</tr>
<tr>
<td>Air</td>
<td>Clinical Material</td>
<td>Processed water</td>
<td>Recreational water</td>
</tr>
<tr>
<td>Clinical Material</td>
<td>Processed water</td>
<td>Recreational water</td>
<td>Soil</td>
</tr>
<tr>
<td>Processed water</td>
<td>Recreational water</td>
<td>Soil</td>
<td>Pets</td>
</tr>
<tr>
<td>Recreational water</td>
<td>Soil</td>
<td>Pets</td>
<td>Livestock</td>
</tr>
<tr>
<td>Soil</td>
<td>Pets</td>
<td>Livestock</td>
<td>Animal stuff</td>
</tr>
<tr>
<td>Pets</td>
<td>Livestock</td>
<td>Animal stuff</td>
<td>Bakery</td>
</tr>
<tr>
<td>Livestock</td>
<td>Animal stuff</td>
<td>Bakery</td>
<td>Eggs, egg products</td>
</tr>
<tr>
<td>Animal stuff</td>
<td>Bakery</td>
<td>Eggs, egg products</td>
<td>Meat, meat products</td>
</tr>
<tr>
<td>Bakery</td>
<td>Eggs, egg products</td>
<td>Meat, meat products</td>
<td>Milk, dairy products</td>
</tr>
<tr>
<td>Eggs, egg products</td>
<td>Meat, meat products</td>
<td>Milk, dairy products</td>
<td>Fish, seafood</td>
</tr>
<tr>
<td>Meat, meat products</td>
<td>Milk, dairy products</td>
<td>Fish, seafood</td>
<td>Fruits, vegetables</td>
</tr>
<tr>
<td>Milk, dairy products</td>
<td>Fish, seafood</td>
<td>Fruits, vegetables</td>
<td>Processed food, meat</td>
</tr>
<tr>
<td>Fish, seafood</td>
<td>Fruits, vegetables</td>
<td>Processed food, meat</td>
<td>Raw food, meat</td>
</tr>
<tr>
<td>Fruits, vegetables</td>
<td>Processed food, meat</td>
<td>Raw food, meat</td>
<td>Raw food, beverage</td>
</tr>
<tr>
<td>Processed food, meat</td>
<td>Raw food, meat</td>
<td>Raw food, beverage</td>
<td>Other Materials</td>
</tr>
<tr>
<td>Raw food, meat</td>
<td>Raw food, beverage</td>
<td>Other Materials</td>
<td>Pets</td>
</tr>
<tr>
<td>Raw food, beverage</td>
<td>Other Materials</td>
<td>Pets</td>
<td>Clinical Material</td>
</tr>
<tr>
<td>Other Materials</td>
<td>Pets</td>
<td>Clinical Material</td>
<td>Pets</td>
</tr>
<tr>
<td>Pets</td>
<td>Clinical Material</td>
<td>Pets</td>
<td>Clinical Material</td>
</tr>
<tr>
<td>Clinical Material</td>
<td>Pets</td>
<td>Clinical Material</td>
<td>Pets</td>
</tr>
</tbody>
</table>

CHROMagar™ Products

- CHROMagar™ Acinetobacter
- CHROMagar™ C. difficile
- CHROMagar™ C. jejuni
- CHROMagar™ Campylobacter
- CHROMagar™ C. perfringens
- CHROMagar™ C. difficile
- CHROMagar™ C. perfringens
- CHROMagar™ Salmonella
- CHROMagar™ Staph. aureus
- CHROMagar™ STEC
- CHROMagar™ Streptococcus
- CHROMagar™ VRE
- CHROMagar™ B. cereus
- CHROMagar™ C. perfringens
- CHROMagar™ Campylobacter
- CHROMagar™ Enterobacteriaceae
- CHROMagar™ Listeria
- CHROMagar™ Mastitis
- Rambach™ Agar
- Rambach™ C. difficile
- CHROMagar™ Salmonella Plus
- CHROMagar™ Staphylococcus
- CHROMagar™ Streptococcus
- CHROMagar™ Vibrio
- CHROMagar™ AOLA
- CHROMagar™ CCA
- CHROMagar™ Cronobacter
- CHROMagar™ TBX
- AquaCHROM™ E. coli
- CHROMagar™ E. coli
- CHROMagar™ E. coli
- CHROMagar™ Liquid E. coli
- CHROMagar™ Pseudomonas
5 Reasons to choose CHROMagar™ Chromogenic Media to bring efficiency to your Microbial Analysis

- Intense Chromogenic Colours
- Fast Results in 18-24 h
- WorldWide Recognition
- 40 years Experience, Specialization and Know-How
- Gain Flexibility Using dehydrated media

Ask your local distributor for more information