Une large gamme de milieux chromogéniques
Pour la détection microbienne
Pour l’isolement et la différenciation des espèces majeures de Candida

99% de Sensibilité / Spécificité

Les levures sont des agents pathogènes de plus en plus importants, en particulier pour les personnes immuno-déprimées, comme les personnes âgées, les victimes du sida, etc. CHROMagar™ Candida permet non seulement la croissance et la détection des levures (comme les milieux traditionnels Sabouraud), mais aussi de différencier instantanément différentes espèces de Candida uniquement par la couleur de la colonie.

CHROMagar™ Candida permet une détection efficace et facile des cultures polymicrobiennes de levures et dans certains cas, il peut détecter les souches résistantes aux antifongiques présentes dans les échantillons, même s’il s’agit d’une population mineure.

Pour l’isolement et la différenciation directe de *Staphylococcus aureus*

95.5% de Sensibilité / 99.4% de Spécificité

Staphylococcus aureus est une bactérie pathogène majeure dans le domaine clinique et dans l’industrie alimentaire. Les infections nosocomiales dues à *S. aureus* créent un nombre croissant de problèmes, il est donc essentiel de les détecter rapidement et précisément. Les milieux traditionnels (basés sur la fermentation au Mannitol) mènent à de nombreux faux négatifs et faux positifs. CHROMagar™ Staph aureus a une sensibilité et une spécificité inégalées pour la détection de *S. aureus* après 24 heures. Ceci évite de nombreux tests d’agglutination latex et catalase sur des souches non *Staphylococcus aureus*.

Pour l’isolement et la différenciation des agents pathogènes des voies urinaires

99.3% de Sensibilité pour E.coli

L’objectif majeur de ce milieu est la détection des agents pathogènes des voies urinaires comme *E.coli* (colonies rouges), *Klebsiella* (colonies bleues métalliques), *P. mirabilis* (colonies brunes avec halo) etc.

Toutefois, CHROMagar™ Orientation a une application plus large en tant que gélose nutritive pour l’isolement des différents micro-organismes. Par exemple, CHROMagar™ Orientation peut être utilisé pour différencier les divers micro-organismes dans d’autres zones infectées, par exemple dans les cicatrices.

CHROMagar™ Orientation est aussi utile lorsqu’il est complété par divers antibiotiques dans la détection des micro-organismes multi-résistants.

Pour l’isolement et la différenciation directe de *Clostridium difficile*

95.4% de Sensibilité

Clostridium difficile est la principale cause d’infection nosocomiale responsable de diarrhée chez l’adulte, notamment chez les patients qui ont à la fois des soins médicaux et un traitement antibiotique. Même si la PCR est devenue la principale technique de détection de *C. difficile*, la culture reste essentielle pour caractériser la souche et faire l’antibiogramme. CHROMagar™ *C. difficile* est un **nouveau milieu fluorogène**, très sensible et spécifique. Il a été développé pour simplifier la culture de *C. difficile* et rendre sa détection plus rapide (lecture en 24h).

(Gailliot et al. Poster 2013 ASM 2014.

Pour la détection de Malassezia spp.

Malassezia est un champignon naturellement présent sur les peaux humaines et animales. Sur une peau saine, il ne provoque pas d’infection, mais lorsque la peau est altérée, les Malassezia sont à l’origine de diverses maladies cutanées comme la dermatite ou l’eczéma.

CHROMagar™ Malassezia a été développé dans le but de non seulement faciliter la détection mais aussi d’améliorer l’algorithme de différenciation des différentes espèces.

(Revised Culture-Based System for Identification of Malassezia Species, by Takamasa et al. ICM No-2007.
Pour l’isolement et la différenciation de Staphylococcus aureus résistant à la Méthicillin (SARM) incluant les SARMs à bas niveau de résistance

100% de Sensibilité / Spécificité^{11}

CHROMagar introduit une révolution dans ce domaine en 2002, avec le premier milieu chromogène pour la détection de Staphylococcus aureus résistant à la Méthicillin : CHROMagar™ MRSA.

Ce milieu a réduit significativement la charge de travail des laboratoires permettant ainsi d’améliorer la surveillance des patients, à grande échelle.

Pour la détection des bactéries Gram (-) avec une sensibilité réduite à la plupart des carbapénèmes

Depuis le lancement de CHROMagar™ KPC en 2007, de nombreuses carbapénémases se sont répandues dans le monde entier, rendant nécessaire aujourd’hui la détection difficile des carbapénémases de bas niveau.

Alain Rambach et Patrice Nordmann ont uni leurs efforts pour développer un milieu chromogène «nouvelle génération» très sensible, CHROMagar™ mSuperCARBA™, permettant de déceler une grande variété de carbapénémases KPC, NDM, VIM, IMP, OXA ... avec une impressionnante limite de détection (10 CFU/ml), même pour les carbapénémases faiblement exprimées comme OXA-48, tout en maintenant un haut niveau de sélectivité.

Une défaillance à détecter rapidement les bactéries Gram (-) résistantes aux antibiotiques contribue à leur propagation incontrolée, et parfois à des échecs thérapeutiques. Pour répondre à cette problématique, CHROMagar a développé un ensemble de suppléments sélectifs à ajouter au CHROMagar™ Orientation, spécialement conçus pour le dépistage des bactéries Gram (-) qui expriment différents types de sensibilité aux antibio.

Pour la détection des bactéries Gram (-) résistantes aux carbapénèmes

Pour la détection des bactéries productrices de Beta-Lactamases à spectre étendu

Pour la détection des bactéries productrices de Beta-Lactamases

Pour la détection de VRE.faecalis & VRE.faecium résistants à la vancomycine (Van A / Van B)

95,5% de Sensibilité / 90,4% de Spécificité^{12}

La résistance acquise à la vancomycine chez VRE.faecalis et VRE. faecium est potentiellement transférable à d’autres agents pathogènes agressifs. L’efficacité des mesures de contrôle afin d’empêcher leur propagation dépend donc de la capacité du laboratoire à détecter rapidement ces VRE.

L’utilisation de CHROMagar™ VRE permet la détection facile des VRE.faecalis et VRE.faecium résistants à la vancomycine grâce à la couleur de la colonie après seulement 24 heures d’incubation.

^{12}_M.L. Miller et al Poster P26 CACIMD 2011.

Pour la détection des Acinetobacter

94,7% de Sensibilité / 91,6% de Spécificité^{13}

Acinetobacter est un organisme qui a une forte capacité de survie sur des surfaces environnementales. Sa capacité à acquérir une résistance antimicrobienne est une cause de préoccupation croissante pour les infections nosocomiales. Dans les hôpitaux, Acinetobacter baumanii, par exemple, peut entrer dans le corps par des plaies ouvertes, des cathéters, des tuyaux de respiration, etc.

Toute politique efficace de contrôle d’infection devrait inclure une surveillance des matières fécales. CHROMagar™ Acinetobacter est un outil spécialement conçu pour faciliter cette étape, en permettant la croissance de colonies rouges sur le milieu.

Pour la détection et la différenciation directe des *Yersinia enterocolitica* pathogènes

100% de Sensibilité / 99% de Spécificité

Parmi les *Yersinia*, *Yersinia enterocolitica* est l’un des plus fréquents pathogènes alimentaires. Les milieux de culture traditionnels, comme le CIN, permettent la croissance de biotypes pathogènes et non pathogènes avec le même aspect, ce qui entraîne une importante charge de travail sur des isolats non pertinents (faux positifs). Avec CHROMagar™ *Yenterocolitica*, les souches pathogènes sont immédiatement différenciées des autres bactéries par une couleur distinctive. Le laboratoire pourra alors concentrer ses efforts seulement sur les colonies pathogènes.

Gaillot et al JCM 2012

Pour la détection et l’isolement de *Salmonella* spp.

100% de Sensibilité / 95% de Spécificité

Les milieux conventionnels pour la détection des *Salmonella* par H2S ont une spécificité très faible entraînant de nombreux faux positifs (*Citrobacter*, *Proteus*, etc.). La charge de travail engendrée par l’examen inutile de colonies suspectes est si lourde que les colonies de *Salmonella* positives peuvent être négligées dans les tests de routine. En raison de leur faible spécificité, les milieux conventionnels nécessitent un examen fastidieux d’au moins 10 colonies par échantillon suspecté. Au contraire, CHROMagar™ *Salmonella* élimine la plupart de ces faux positifs et permet aux techniciens de se concentrer sur les vrais échantillons contaminés.

Pour l’isolement et la différenciation des *Streptococcus agalactiae* (GBS)

92% de Sensibilité / 95% de Précision

Les *Streptococci* du groupe B (GBS) sont connus pour être associés à de graves infections néonatales telles que la septiciémie et la méningite. La détection de la colonisation vaginale par GBS chez les femmes enceintes est la stratégie la plus efficace pour prévenir ces infections. La méthode LIM RambaQUICK™ StrepB est un outil de dépistage puissant, associant un bouillon d’enrichissement sélectif et un milieu d’isolement sensible et hautement spécifique. Elle permet la détection des GBS (hémolytiques et non hémolytiques) après seulement 18-24h d’incubation en aérobie, tout en inhibant la croissance des *Enterococci*.

Pour la détection des *E.coli* produisant des Shiga-Toxines (STEC)

89.1% de Sensibilité / 91.4% de Spécificité

Un nombre croissant d’études inquiétantes a dernièrement montré que les *E.coli* non-O157 produisant des Shiga-Toxines (STEC) ont été responsables d’épidémies alimentaires. Dans de nombreux cas, les laboratoires ont limité leur recherche d’*E.coli* pathogène au sérotype O157, du fait qu’il n’existe pas de milieu de culture sélectif disponible pour les *E.coli* non-O157. CHROMagar™ STEC est conçu pour combler cette lacune : la détection, en tant que colonies mauves, non seulement du STEC O157 classique, mais également de nombreux autres sérotypes. C’est un excellent outil pour un grand nombre de procédés de dépistage d’échantillons.

Mallika Couall, François-Xavier Weill et al JCM 2012

Pour la détection et l’isolement de *Staphylococcus* spp.

Les *Staphylococci* en général (et non seulement les S.aureus) peuvent devenir pathogènes dans des circonstances particulières. Par exemple, le *Staphylococcus* à coagulase négative (SCN) est l’un des micro-organismes les plus fréquemment isolés dans les cultures de sang. Malgré sa fréquence en tant que contaminant, le SCN est devenu un important agent pathogène nosocomial.

CHROMagar™ *Staphylococcus* permet une séparation sélective des *Staphylococci* et une différenciation des colonies par leur couleur.
Pour la détection, la différenciation et le dénombrement de *Campylobacter* thermotolérant

Campylobacter est une cause majeure de maladies diarrhéiques d’origine alimentaire chez l’homme et la cause bactérienne la plus fréquente de gastro-entérite dans le monde entier.

Avec CHROMagar™ *Campylobacter*, la détection de *Campylobacter* thermotolérants en rouge sur un agar translucide, facilite la lecture par rapport à une gelée traditionnelle à base de charbon où le dénombrement est difficile. Les autres micro-organismes seront inhibés ou se développeront en bleu.

Pour la détection et l’isolement des *Salmonella* spp dans les échantillons cliniques et alimentaires

93.7% de Sensibilité

Les milieux traditionnels pour la détection de *Salmonella* avaient une spécificité très basse. La charge de travail des examens inutiles sur colonies suspectes était si élevée que de réelles colonies de *Salmonella* positives étaient souvent manquées dans les tests de routine. Rambach Agar™ élimine la plupart des faux positifs. Le milieu Rambach Agar™ ayant une spécificité très élevée : (1) moins d’échantillons sont positifs et doivent être vériés et (2) il n’y a plus de nécessité d’enquêter sur 10 colonies suspectes différentes par échantillon.

99% de Sensibilité

La récente révision de la norme ISO 6579 pour le test *Salmonella* est le résultat direct de l’incidence croissante des *Salmonella* lactose positives dans des cas d’intoxication alimentaire. CHROMagar™ *Salmonella Plus* a été développé pour répondre aux exigences de la norme ISO 6579 et offre une identification claire et facile des *Salmonella* notamment : les *Salmonella* lactose positives, les *S. typhi* et les *S. paratyphi*.

Pour l’isolement sélectif et la différenciation des *E.coli* O157 dans les aliments / échantillons cliniques

98% de Sensibilité pour *E.coli* O157

Le milieu classique pour la détection de *E.coli* O157, Sorhol Ac K. Conkey Agar, a une faible spécificité créant ainsi un grand nombre de faux positifs (Proteus, *E. hermannii*, etc.). Il est de plus difficile à lire, car *E.coli* O157 donne des colonies incolores parmi les colonies rouges de la flore annexée.

CHROMagar™ O157 est un milieu chromogène avec une détection plus facile de *E.coli* O157 en tant que colonies mauves parmi les colonies bleues et incolores. Sa sélectivité peut être augmentée en ajoutant du tellurur de potassium.

Pour la détection et l’isolement de *Streptococcus* spp

Dans la prévention des mammites dans les troupeaux de vaches laitières, il est important de détecter rapidement la présence de *Streptococcus* et de différencier les espèces environnementales (*S. uberis, S.dysgalactiae*) des espèces pathogènes contagieuses comme *S.sagalactiae* et *Enterococcus* d’origine fécale.

CHROMagar™ *Streptococcus* est un outil utile pour analyser la flore Streptococcale dans la recherche de mammites.
Pour l’isolation et la détection de *V. parahaemolyticus*, *V. vulnificus* et *V. cholerae*

95% de Spécificité

V. parahaemolyticus, *V. vulnificus* et *V. cholerae* sont des bactéries pathogènes qui peuvent causer une intoxication alimentaire grave. Pour la détection de ces bactéries, les méthodes traditionnelles (TCBS) sont longues, exigent une lourde charge de travail et ne sont pas très sensibles.

Au contraire le milieu CHROMagar™ Vibrio aide à différencier facilement *V. parahaemolyticus*, *V. vulnificus* et *V. cholerae*, des autres Vibrio directement à l’étape d’isolement par la couleur de colonies avec une sensibilité plus élevée que les méthodes conventionnelles.

Angela Di Pinto Università degli Studi di Bari Aldo Moro, Italy.

Pour la détection de *E. sakazakii* (Cronobacter spp) selon la norme ISO/TS 22964

Enterobacter sakazakii est une bactérie Gram (-) non sporulée appartenant à la famille des Enterobacteriaceae. Elle a été impliquée dans des épidémies provoquant la méningite ou l’entérite, en particulier chez les nourrissons.

CHROMagar™ E. sakazakii est un milieu chromogénique pour la détection de *E. sakazakii* dans les aliments, principalement dans le lait en poudre, selon la norme ISO/TS 22964.

Pour la détection, la différenciation, le dénombrement et la confirmation de *Listeria monocytogenes* dans les échantillons alimentaires

100% de Sensibilité

Listeria monocytogenes est une bactérie pathogène qui peut provoquer des intoxications alimentaires graves. Puisque *L. monocytogenes* et *L. innocua* ont les mêmes propriétés biochimiques, elles ne peuvent pas être différenciées sur les milieux traditionnels (Palcam, Oxford). Sur CHROMagar™ Listeria, les colonies de *L. monocytogenes* ont une couleur spécifique bleue et sont entourées d’un halo blanc opaque. La méthode CHROMagar™ Listeria permet la détection d’échantillons négatifs en seulement 2 jours. Cette méthode ne nécessite qu’une seule étape d’enrichissement Fraser. La confirmation des échantillons positifs peut être réalisée en choisissant une colonie suspecte directement à partir de CHROMagar™ Listeria et en la repiquant sur CHROMagar™ Identification Listeria pour un résultat dès le lendemain.

Validation study, Coignard M. 2005.

Pour la détection et le dénombrement des groupes *Bacillus cereus*

100% de Sensibilité / 100% de Spécificité

L’intoxication alimentaire provoquée par *Bacillus cereus* est souvent associée à la consommation de produits prêt-à-consommer. La bactérie a par exemple été isolée à partir de haricots secs, de céréales et d’aliments secs tels que les épices, des mélanges d’assaisonnements et des pommes de terre.

Grâce à CHROMagar™ B. cereus, les colonies bleues entourées d’un halo sur une gélose translucide facilitent la lecture par rapport à une gélose Mannitol traditionnelle qui présente des colonies rouges sur fond rose.

Adria Normande Study 2012

Pour l’isolation et la différenciation directe de *Clostridium perfringens*

Clostridium perfringens est impliqué dans des intoxications alimentaires et des infections animales. CHROMagar™ C. perfringens permet la détection et la numération de *Clostridium perfringens* dans les échantillons d’aliments et d’eau. Spécifique et sélectif, ce milieu détecte les colonies de *Clostridium perfringens* par une coloration orange mais aussi fluorescente sous lumière UV 365nm, les autres micro-organismes étant bleu, bleu métallique ou inhibés.

CHROMagar™ C. perfringens peut être utilisé avec ensemencement en surface comme en profond, en donnant de meilleures performances que les milieux traditionnels comme le TSC.
Pour la détection et le dénombrement des *E. coli* dans les échantillons de nourriture et d'eau

CHROMagar™ E.coli

Lecture
- *E. coli*
 - Bleu
- Autres bactéries Gram (-)
 - Incolore
- Bactéries Gram (+)
 - Inhibé

Réf. :
- EC160 : 1 L pack
- EC164 : 5 L pack
- EC168-25-25 : 25 L pack

Pour la détection simultanée et le dénombrement de *E. coli* et autres Coliformes dans les échantillons de nourriture ou d'eau

CHROMagar™ ECC

Lecture
- *E. coli*
 - Bleu
- Autres Coliformes
 - Pourpre
- Autres bactéries Gram (-)
 - Incolore ou inhibé

Réf. :
- EF302 : 1 L pack
- EF322 : 5 L pack
- EF323-25-25 : 25 L pack

CHROMagar™ Liquid ECC

2ml/Test

Lecture
- *E. coli*
 - Bleu
- Autres Coliformes
 - Pourpre
- Autres bactéries Gram (-)
 - Incolore ou inhibé

Réf. :
- EL382 : 5 L pack

Pour la détection simultanée et le dénombrement de *E. coli* et autres Coliformes dans les échantillons d'eau

CHROMagar™ Liquid ECC est un nouveau milieu de culture chromogénique sous forme de bouillon (sans gélée), à utiliser dans le cadre de la technique de filtration sur membrane, en imprimant un pad. Vous pouvez prendre un aliquote pour préparer la quantité exacte de bouillon que vous désirez. Grâce à cette flexibilité, vous simplifiez votre gestion de stock de milieux prêts à l'emploi et évitez les complications liées à la gestion de leur pérennité.

Présence / absence de *E. coli* et Coliformes dans les échantillons d'eau

Technique Liquide

AquaCHROM™ ECC est un milieu non-gélifié conçu pour détecter la présence de *E. coli* et autres Coliformes dans les échantillons d'eau de 100ml. Son avantage, par rapport à d'autres tests similaires disponibles sur le marché, réside dans le fait qu'il n'y ait pas besoin de lampe ultra-violette pour confirmer la présence de *E. coli* dans l'échantillon. La formulation innovante de AquaCHROM™ ECC utilise deux chromogènes différents (au lieu des traditions combinaisons chromogènes / fluorogène) qui permettent de lire le résultat dans des conditions normales d'clairage. L'échantillon développe une coloration jaune quand il s'agit de Coliformes et une coloration verte lorsqu'il s'agit de *E. coli*.

Présence / absence de *Enterococcus* dans les échantillons d'eau

Technique Liquide

AquaCHROM™ Enterococcus est un milieu non-gélifié conçu pour détecter la présence de *Enterococcus* dans les échantillons d'eau de 100ml. Les *Enterococci* sont des indicateurs de la qualité de l'eau, en particulier des eaux de baignade. Leur présence témoigne d'un risque majeur de la présence d'autres micro-organismes, potentiellement pathogènes. Ils sont plus résistants que les Coliformes aux conditions environnementales difficiles, ce qui permet de détecter des contaminations plus anciennes. AquaCHROM™ Enterococcus développe une coloration verte en présence d'*Enterococci* dans l'échantillon testé.

Pour l'isolement et la détection de *Pseudomonas spp.*

P. aeruginosa est un indicateur valable pour le contrôle de l'efficacité des traitements de désinfection de l'eau. Ce paramètre est actuellement utilisé comme critère dans la régulation des patougeries et piscines. En plus de son rôle d'indicateur de propreté, *P. aeruginosa* est également recherché comme pathogène opportuniste dont la transmission est souvent associée à l'eau.

CHROMagar™ Pseudomonas fournit des résultats rapides et claires pour la détection de *Pseudomonas* grâce à des couleurs de colonies différentielles.
Créateur de milieux chromogéniques depuis 1979!

Le premier milieu de culture chromogénique (pour la détection de E.coli) a été inventé et breveté par le Dr A. Rambach, en 1979. L’introduction de ce milieu a déclenché une révolution dans le diagnostic microbien et l’introduction de toute une gamme de milieux chromogéniques pour la détection de pathogènes cliniques majeurs présents dans l’alimentaire. L’utilisation de milieux de culture chromogéniques pour la détection de bactéries reste en constante augmentation, malgré l’introduction d’autres techniques (souvent basées sur la biologie moléculaire).

Comment fonctionne la technologie chromogénique?

Il s’agit de colorer des colonies bactériennes en plein développement avec des couleurs distinctives afin de permettre leur différenciation. Dr A. Rambach, a développé et breveté l’utilisation, en microbiologie, d’une technologie basée sur une molécule soluble incolore (appelée chromogène) composée d’un substrat, ciblant une activité enzymatique spécifique et d’un chromophore. Lorsque le conjugué incolore chromogène est clivé par l’enzyme de l’organisme cible, le chromophore est libéré. Dans sa forme non conjuguée, le chromogène expose sa couleur distinctive et forme un précipité en raison de sa solubilité réduite. Le résultat est une différenciation très spécifique et distincte des colonies, visible à l’œil nu dans des conditions normales d’éclairage.

5 Raisons de choisir les milieux chromogéniques CHROMagar™ pour votre analyse microbienne

- Résultats rapides en 18h-24h
- Produits de renommée mondiale
- 30 ans d’expérience et de savoir-faire
- Flexibilité accrue
- Couleurs intenses

Demandez plus d’informations à votre distributeur

www.CHROMagar.com

Fabriquant: CHROMagar - 4 place du 18 juin 1940 75006 Paris - France CHROMagar@CHROMagar.com www.CHROMagar.com

Pour plus d’informations sur nos produits, veuillez consulter la documentation technique disponible sur notre site internet.